MICROWAVE DIGESTION SYSTEM

Brand	: MILESTONE
Model	: ETHOS UP
Location	: K639 Room, 6 th Floor, Chaloemprakiet Building, Phyathai Campus
Custodian	: PRADUP MESAWAT

MILESTONE ETHOS UP

- Specifically designed for closed vessel acid digestion, user interface, reaction sensors and pressure vessels.
- It offers a complete first-class solution also for microwave solvent extraction, organic and inorganic synthesis, protein hydrolysis, and vacuum evaporation.

PRODUCTIVITY MATTERS

Cavity has a volume in excess of 70 litres

Why is this important and what are the main implications of this design?

- Firstly, digestion rotors with more sample places can be accommodated thus improving productivity and sample preparation throughput.
- Secondly, the microwave unit is inherently much safer because a larger cavity better contains gases escaping from vessels, should there be a sudden overpressurisation.

POWER MATTERS TOO (Highest power)

- The two 950 Watt magnetrons for a total of 1900 Watt making it the most powerful microwave digestion system available for sample preparation.
- Direct temperature and pressure control are used in a single reference vessel. In all vessels, contact-less temperature is used where the actual temperature.
- In combination with our 'vent-and-reseal' vessel technology, the sensors ensure complete and safe digestions without any loss of volatile compounds.

PRESSURE-RESPONSIVE DOOR

- The door slightly opens for rapid and safe pressure release and the microwave power is instantaneously cut off.
- The door is pulled back, resealing the cavity. For additional safety, an automatic door locking system.
- At the end of the run, the door remains locked until the solutions have cooled down to a user preset temperature.
- This prevents misuse of the instrument and in turn exposure of the chemist to high pressure vessels.

SAFEVIEW

- \blacktriangleright High definition digital camera interfaced with the instrument terminal.
- The chemist to monitor the progress of the digestion whilst fully protected by the allstainless steel door of the instrument.
- \blacktriangleright A video of the entire run is shown in real time along with the digestion figures.

USER INTERFACE

- Controlled via a compact terminal with an easy-to-read, bright, full-colour, touch screen display.
- Provided with multiple USB and Ethernet ports for interfacing the instrument to external devices and to the local laboratory network.

A PIECE OF CAKE

- The SK-15 is a high-pressure rotor featuring up to 15 TFM vessels with a volume of 100 ml and suitable for all applications.
- The MAXI-44 is a high-throughput rotor featuring up to 44 TFM vessels with a volume of 100 ml and suitable for a wide range of samples including environmental and all organics.
- Both rotors are fully compliant with commonly used standard methods, such as the US EPA 3015, 3051, and 3052. The SK-15 and the MAXI-44 feature an enhanced 'ventand-reseal'
- Highest temperature and pressure, highest safety standards, ease of use, and very fast cooling (180°C to 40°C in 10 minutes).
- Large selection of high purity quartz and TFM inserts is available for the SK-15 and the MAXI-44 rotors for smaller sample amounts or to minimise the dilution factor of the analytical solution.

Sensor & Control Modules

Direct temperature control	 Thermocouple which is much more rugged than fiber optic designs. Temperature in the vessel is displayed in real time via EasyCONTROL software.
Direct pressure control	 Direct pressure monitoring and control in a reference vessel. Method development and challenging "unknown" samples to keep pressure levels within the vessel's specifications.
Indirect (IR) temperature control	 IR sensor that measures the external temperature of the vessels. Temperature monitoring in all vessels in real time is displayed via EasyCONTROL software.
Indirect pressure sensor	 The P2 sensor detects venting in all vessels simultaneously. Automatically reduces microwave power to prevent overpressure situations. Works in tandem with the "vent-and-reseal" vessels to provide unmatched protection from exothermic reactions.
Magnetic stirrer	Variable speed magnetic stirrer with large turning magnet in base of chassis for continuous stirring, and homogenous mixing in all vessels.

Acid solutions

The possibility of use different types of acid solutions is strictly related to the material of the vessels and accessories.

- **FFM vessels and TFM inserts**: HNO₃, HCl, HF, HBF₄, H₂SO₄, H₃PO₄, HClO₄, H₂O₂
- \blacktriangleright Glass and quartz inserts: HNO₃, HCl, HBF₄, H₂SO₄, H₃PO₄, HClO₄, H₂O₂

Rotor SK-15

MAXI-44

Technical Specifications

	SK-15	MAXI-44		
Number of Samples	15	44		
Max. Sample Weight (g)	Up to 1 g (of organic dried matter)	Up to 0.5 g		
Vessel Volume (mL)	100	100		
Max. Temp. & Pressure				
Max. Press. (bar)	100	35		
Max. Temp. (^O C)	300	300		
Vessel Material	TFM	TEM		
Venting Technology	Vent-and-reseal	Seft-regulating		
Standard Methods	EPA 3015, 3051 and 3052	EPA 3015, 3051 and 3052		

Applications

Applications	SK-15	MAXI-44
Environmental	\checkmark	\checkmark
Food/Feed	\checkmark	\checkmark
Agriculture	\checkmark	\checkmark
Beverages	\checkmark	\checkmark
Chemical	\checkmark	\checkmark
Cosmetics	\checkmark	\checkmark
Metals/Alloys	\checkmark	
Plastic Polymers	\checkmark	
Catalysts Pigments	\checkmark	
Clinical	\checkmark	\checkmark
Pharmaceutical	\checkmark	\checkmark
Geochemistry/Mining	\checkmark	
Ceramics Refractory	\checkmark	
Petrochemical/Energy	\checkmark	

https://www.youtube.com/watch?v=Fh9ab97IWt8

Vessel Inserts (Compatibility: SK rotor only)

35 mL and 50 mL Inserts

Designed for ultratrace analysis: manufactured from quartz or extra high purity TFM for lowest possible blank contribution. Also used to digest difficult organics.

Max. temp. 300°C

Typical acid vol. 5 mL

Microsampling Inserts

For very small sample sizes: Quartz or TFM microsampling inserts (3 mL or 6 mL). Increases rotor capacity 3x (SK-15 increases to 45 positions).

Max. temp. 300°C

Typical acid vol. < 2-4 mL

Sample amount Minimum volume :	SK-15		
without inserts	10		
with QS-50 quartz inserts	5		
with 3-positions rack inserts	1		
Sample amount Maximum volume :			
without inserts	50		
with QS-50 quartz inserts	15		
with 3-positions rack inserts	3		

No Cross Contamination

Three blanks were analyzed in run #1. The same blank was prepared along with two Animal Tissue samples, showing no cross contamination.

Vessel-inside-vessel technology

- To control these exothermal reactions by providing a heat sink for the energy liberated during oxidization.
- The water draws the heat away from the reaction mixture, slowing down the reaction kinetics and preventing a runaway reaction.
- Different materials (Quartz or TFM) and with different sizes and shapes, to accomplish all application requirements.
- The quartz inserts are especially effective for difficult organics such as polymers and oils, since these samples can sometimes stick to Teflon walls and damage them during heating.
- Quartz inserts also enable higher weights of difficult organics (up to 1g) to be digested without causing the vessel to vent.
- The inserts sit in a water/ H_2O_2 mixture, which produces O_2 during heating, which in turn converts CO_2 and NO_x produced during digestion to HNO_3 , greatly reducing pressure build up in the vessel.
- An additional benefit is that as little as 1 mL HNO_3 is used, which reduces reagent blank and allows analysis at lower dilution levels, improving detection limits.

Advantages

- Less acid volume
- Higher sample amount
- Lower dilution factor
- Increased method detection limit
- Less surface contamination
- Lower analytical blank