# Flame Atomic Absorption Spectrometer (FAAS)





| Brand     | : | PERKINALMER                                                                |
|-----------|---|----------------------------------------------------------------------------|
| Model     | : | PinAAcle 900T                                                              |
| Location  | : | K640 Room, 6 <sup>th</sup> Floor, Chaloemprakiet Building, Phyathai Campus |
| Custodian | : | PRADUP MESAWAT                                                             |

### Applications: FAAS (mg/L), GFAAS (µg/L), Hydride Generation

| Description and Specification FAAS: |                                                                                                                                                                                                                            |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| System Design:                      | <ul> <li>Double-beam flame spectrometer and graphite furnace atomizer on<br/>a single instrument.</li> <li>Deuterium background correction ensures maximum sensitivity.</li> </ul>                                         |  |  |  |
| Monochromator:                      | <ul> <li>Wavelength range: 184 – 900 nm.</li> <li>Diffraction grating: 1800 lines/mm blazed at 236 nm and 597 nm.</li> <li>Focal length: 267 nm</li> </ul>                                                                 |  |  |  |
| Spectra Bandwidths:                 | Automatic slit widths of 0.2, 0.7 and 2.0 nm at their optimized slit<br>height.                                                                                                                                            |  |  |  |
| Detector:                           | Wide-range segmented solid-state detector, built-in low-noise CMOS charge amplifier array.                                                                                                                                 |  |  |  |
| Automatic Lamp<br>Selection:        | 8-lamp mount with built-in power supplies cableless Lumina hollow<br>cathode and patented EDLs improved sensitivity and extended<br>lamp lifetime.                                                                         |  |  |  |
| Lamps:                              | <ul> <li>Lumina Hollow Cathode Lamps - Unique 2-inch cableless coded<br/>lamps automatic setup and provide long lamp lifetime.</li> <li>EDLs designed to deliver the best linearity, sensitivity and precision.</li> </ul> |  |  |  |
| Cutting-edge fiber:                 | $\succ$ Maximize light throughput for improved detection limits.                                                                                                                                                           |  |  |  |
|                                     |                                                                                                                                                                                                                            |  |  |  |

| Description and Specification FAAS: |                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Nebulizers:                         | Stainless steel or high-sensitivity, corrosion resistant options are available<br>to suit virtually any application.                                                                                                                                                                                                                    |  |  |  |  |
| Burner Heads:                       | <ul> <li>A variety of solid titanium burner heads (5-cm, 10-cm as well as 3-slot) for different flame and sample types.</li> <li>The align burner automatically adjusts the burner head position vertically and horizontally.</li> </ul>                                                                                                |  |  |  |  |
| Innovative new<br>mixing chamber:   | Requires no gas line connections.                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Flame Atomizer:                     |                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Gas Controls:                       | <ul> <li>Oxidant and fuel monitoring. Keyboard-activated ignition system with air-acetylene.</li> <li>Acetylene flow is automatically adjusted prior to the oxidant change when switching to or from nitrous oxide-acetylene operation.</li> </ul>                                                                                      |  |  |  |  |
| Safety Functions:                   | <ul> <li>Interlocks ignition if the burner head, the nebulizer/end cap, or the burner drain system is not correctly installed; the liquid level in the drain vessel is incorrect; or gas pressures are too low.</li> <li>Interlocks also will automatically shut down burner gases if a flame is not detected.</li> </ul>               |  |  |  |  |
| Sample Introduction<br>System:      | <ul> <li>System consisting of the quick-change spray chamber, burner head and nebulizer units.</li> <li>Alignment of the flame is automatic, using a motorized burner mount for vertical and horizontal burner adjustment.</li> <li>The standard is all-titanium, 10 cm, single-shot burner head for airacetylene operation.</li> </ul> |  |  |  |  |

## Graphite Furnace Atomic Absorption Spectrometer (GFAAS)



### Description and Specification GFAAS:

| System Design:      | > Transversely Heated Graphite Atomizer (THGA)-the graphite tube is                  |  |  |  |
|---------------------|--------------------------------------------------------------------------------------|--|--|--|
|                     | transversely heated, providing a uniform temperature profile over the                |  |  |  |
|                     | entire tube.                                                                         |  |  |  |
| Furnace system:     | $\succ$ An internal purge gas goes though the graphite tube to remove the            |  |  |  |
|                     | volatilized matrix vapors during drying and thermal pretreatment.                    |  |  |  |
| Common Furnace      | $\succ$ Analytical programs with up to 12 steps can be set up. Each step can be      |  |  |  |
| Features:           | programmed with the following parameters.                                            |  |  |  |
| Temperature:        | Ambient up to 2600 $^{\circ}$ C in steps of 10 $^{\circ}$ C                          |  |  |  |
| Ramp Time:          | 0 to 99 sec in steps of 1 sec                                                        |  |  |  |
| Hold Time:          | 0 to 99 sec in steps of 1 sec                                                        |  |  |  |
| Internal Gas Flow:  | 0 mL/min (gas stop), 50 mL/min (min-flow), 250 mL/min (full flow)                    |  |  |  |
| Furnace Opening:    | Pneumatically-operated by software command.                                          |  |  |  |
| Required Inert Gas: | Argon-inlet pressure 300 kPa (3 bar) minimum.                                        |  |  |  |
|                     | Maximum gas consumption is 700 mL/min.                                               |  |  |  |
| Furnace             | $\succ$ Sample tray with 88 and 148 sampling positions for sample and                |  |  |  |
| Autosampler         | reference solutions and 1 overflow container for pipette washing.                    |  |  |  |
|                     | Minimum sample requirement: Ca. 0.1 mL                                               |  |  |  |
| Graphite Tubes      | Baseline offset correction, Background correction                                    |  |  |  |
|                     | $\blacktriangleright$ Using THGA or HGA tubes, both feature integrated platforms for |  |  |  |
|                     | exceptional and are pyrocoated for longer lifetime.                                  |  |  |  |
|                     | Transversely Heated Graphite Atomizer (THGA) and longitudinal Zeeman                 |  |  |  |
|                     | background correction.                                                               |  |  |  |

Description and Specification GFAAS:

| Dispensable Volume:    | $\succ$ Sample and Reagent: 1-99 µL, selectable in increment of 1 µL.                                                              |  |  |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                        | Max. dispensable volume is 99 µL                                                                                                   |  |  |  |  |
|                        | (Sample volume + reagent volume).                                                                                                  |  |  |  |  |
|                        | Flushing volume is fixed at 1.3 mL                                                                                                 |  |  |  |  |
| Electronics:           | The autosampler is powered from the spectrometer and software-<br>controlled.                                                      |  |  |  |  |
| Background Correction: | Zeeman-effect Background Correction-PinAAcle 900T                                                                                  |  |  |  |  |
|                        | Longitudinal AC Zeeman-effect background correction using a<br>modulated 0.8 Tesla magnetic field.                                 |  |  |  |  |
| Furnace Camera:        | View inside the tube for easy autosampler tip alignment and<br>sample dispensing.                                                  |  |  |  |  |
|                        | Monitor drying during analysis for simpler method.                                                                                 |  |  |  |  |
|                        | Used to monitor drying and pyrolysis during analysis for simpler<br>method development.                                            |  |  |  |  |
| Data Handing:          | Readings linear in absorbance (-0.500 A to +2.000A), concentration<br>or emission intensity variable scale from 0.01 to 100 times. |  |  |  |  |
|                        | $\succ$ Integration times operator-selectable from 0.1 to 120 sec in                                                               |  |  |  |  |
|                        | increments of 0.1 sec.                                                                                                             |  |  |  |  |
|                        |                                                                                                                                    |  |  |  |  |

Stabilized Temperature Platform Furnace (STPF):

- Integrated platform
- Matrix modifiers
- > Maximum power heating
- $\blacktriangleright$  No internal gas flow during atomization

### Hydride Generator Model : FIAS100



Description and Specification of Hydride Generator:

| Flow Injection          | FIAS-100 Flow Injection System for cold vapor mercury AA.                                         |
|-------------------------|---------------------------------------------------------------------------------------------------|
| Mercury System:         | Single beam low pressure Hg lamp and solar-blind detector with<br>maximum sensitivity at 254 nm.  |
|                         | Automatic baseline offset correction (BOC) and control electronics                                |
|                         | based on SMD (Surface Mounted Device) technology.                                                 |
|                         | Peristaltic pump of 8 channels for tubing with 0.13 to 3.18 mm inner diameter.                    |
|                         | The pump speed is selectable from 30 to 120 rpm.                                                  |
|                         | $\succ$ FI switching value with 5 ports and exchangeable sample loops                             |
|                         | (500 $\mu$ L loop supplied as standard).                                                          |
| Quartz                  | The heated quartz tube atomizer for the determination of As and                                   |
|                         | Se absorption wavelengths below 200 nm.                                                           |
|                         | Hg can be easily reduced in solution to generate elemental                                        |
|                         | mercury, known as cold vapor (CV).                                                                |
| FIAS:                   | Speeds up analyses requiring complex sample preparation such as                                   |
|                         | Hg and hydride-forming element.                                                                   |
|                         | Regulated gas supply used for: As, Se, and Hg.                                                    |
|                         | $\blacktriangleright$ The quartz cell was heated to 900 °C for the hydrides and 100 °C            |
|                         | for mercury vapor condensation in the cell.                                                       |
| Mercury/Hydride System: | Delivers improved detection limits (down to the ng range) for                                     |
|                         | mercury and hydride-forming elements.                                                             |
| Reductant:              | Sodium borohydride for hydrides or stannous chloride for mercury                                  |
|                         | to produce the gaseous vapors.                                                                    |
| The Sample Loop Size:   | ➢ 500 µL for all analytes                                                                         |
| Flow rate (mL/min):     | $\succ$ Flow of 50, 80 and 100 mL/min were used for the arsenic, selenium                         |
|                         | and mercury determinations.                                                                       |
| The Carrier Solution:   | As and Se determination was a 10% (v/v) hydrochloric acid (HCl)                                   |
|                         | solution. For As, the NaBH $_4$ concentration was increased to 0.5%                               |
|                         | $\blacktriangleright$ Mercury was 3% (v/v) HCl. Hg using SnCl <sub>2</sub> as the reducing agent, |
|                         | the reducing solution consisted of 1.1% (w/v) $SnCl_2$ (from                                      |
|                         | SnCl <sub>2</sub> •2H <sub>2</sub> O) in 3.0% (v/v) hydrochloric acid.                            |
|                         | The selenium hydride generation reducing agent was an aqueous                                     |
|                         | solution of 0.2% (w/v) NaBH <sub>4</sub> in a 0.05% (w/v) NaOH.                                   |

|     | Lamp and working standard for Flame Atomic Absorption Spectrometry (FAAS) |                       |                                   |                                  |       |       |                          |
|-----|---------------------------------------------------------------------------|-----------------------|-----------------------------------|----------------------------------|-------|-------|--------------------------|
| No. | EDL<br>Lamp                                                               | Char. Conc.<br>(mg/L) | Sensitivity Check<br>Conc. (mg/L) | Sensitivity Check<br>Abs. (mg/L) | -20%  | +20%  | Linear to Zero<br>(mg/L) |
| 1   | As                                                                        | 0.59                  | 25                                | 0.186                            | 0.149 | 0.224 | 55                       |
| 2   | Cd                                                                        | 0.01                  | 0.5                               | 0.220                            | 0.176 | 0.264 | 1                        |
| 3   | Pb                                                                        | 0.18                  | 8                                 | 0.196                            | 0.156 | 0.235 | 10                       |
| 4   | Se                                                                        | 0.3                   | 15                                | 0.220                            | 0.176 | 0.264 | 100                      |

| No. | HCL  | Char. Conc. | Sensitivity Check | Sensitivity Check | -20%  | +20%  | Linear to Zero |
|-----|------|-------------|-------------------|-------------------|-------|-------|----------------|
|     | Lamp | (mg/L)      | Conc. (mg/L)      | Abs. (mg/L)       |       |       | (mg/L)         |
| 1   | Ag   | 0.02        | 1.1               | 0.242             | 0.194 | 0.290 | 1              |
| 2   | Au*  | 0.18        | 7                 | 0.171             | 0.137 | 0.205 | 50             |
| 3   | B*   | 13          | 600               | 0.203             | 0.162 | 0.244 | 400            |
| 4   | Ca*  | 0.062       | 3                 | 0.213             | 0.170 | 0.255 | 5              |
| 5   | Со   | 0.053       | 3                 | 0.249             | 0.199 | 0.299 | 1              |
| 6   | Cr*  | 0.078       | 4                 | 0.226             | 0.181 | 0.271 | 5              |
| 7   | Cu   | 0.025       | 1.3               | 0.229             | 0.183 | 0.275 | 1.6            |
| 8   | Fe   | 0.04        | 2                 | 0.220             | 0.176 | 0.264 | 3              |
| 9   | K*   | 0.02        | 1                 | 0.220             | 0.176 | 0.264 | 1              |
| 10  | Mg   | 0.004       | 0.18              | 0.220             | 0.176 | 0.264 | 0.25           |
| 11  | Mn   | 0.016       | 1                 | 0.275             | 0.220 | 0.330 | 0.6            |
| 12  | P*   | 290         | 140000            | -                 | -     |       | 10000          |
| 13  | Zn   | 0.006       | 0.3               | 0.220             | 0.176 | 0.264 | 0.75           |

\*A spacer is required for this element. For analysis of complex samples, the addition of a spacer may be desirable to reduce chemical interferences.

|     | Lamp and working standard for Graphite Furnace Atomic Absorption Spectrometry (GFAAS) |                                                  |                                        |                                                          |  |  |  |  |
|-----|---------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------|----------------------------------------------------------|--|--|--|--|
| No. | EDL Lamp                                                                              | Characteristic Mass (pg/0.0044 A <sup>-</sup> s) | Sensitivity Check ( $\mu$ g/L for A s) | Modifier                                                 |  |  |  |  |
| 1   | As                                                                                    | 40 pg /0.0044 A s                                | 50 µg/L for 0.11 A s                   | 0.005 mg Pd + 0.003 mg Mg(NO <sub>3</sub> ) <sub>2</sub> |  |  |  |  |
| 2   | Cd                                                                                    | 1.3 pg /0.0044 A <sup>-</sup> s                  | 2.0 μg/L for 0.13 A <sup>-</sup> s     | 0.05 mg $NH_4H_2PO_4$ + 0.003 mg $Mg(NO_3)_2$            |  |  |  |  |
| 3   | Hg                                                                                    | 220 pg /0.0044 A s                               | 400 µg/L for 0.16 A s                  | 0.005 mg Pd + 0.003 mg Mg(NO <sub>3</sub> ) <sub>2</sub> |  |  |  |  |
| 4   | Pb                                                                                    | 30 pg /0.0044 A s                                | 50 µg/L for 0.15 A s                   | 0.05 mg $NH_4H_2PO_4$ + 0.003 mg $Mg(NO_3)_2$            |  |  |  |  |
| 5   | Se                                                                                    | 45 pg /0.0044 A s                                | 100 µg/L for 0.20 A s                  | 0.005 mg Pd + 0.003 mg Mg(NO <sub>3</sub> ) <sub>2</sub> |  |  |  |  |
|     |                                                                                       |                                                  |                                        |                                                          |  |  |  |  |

| No. | HCL Lamp | Characteristic Mass (pg/0.0044 A s) Sensitivity Check (µg/L for A s) |                         | Modifier                                                 |
|-----|----------|----------------------------------------------------------------------|-------------------------|----------------------------------------------------------|
| 1   | Ag       | 4.5 pg/0.0044 A <sup>-</sup> s                                       | 5.0 μg/L for 0.10 A s   | 0.005 mg Pd + 0.003 mg Mg(NO <sub>3</sub> ) <sub>2</sub> |
| 2   | Au       | 18 pg/0.0044 A <sup>-</sup> s                                        | 40 μg/L for 0.20 A s    | 0.005 mg Pd + 0.003 mg Mg(NO <sub>3</sub> ) <sub>2</sub> |
| 3   | В        | 600 pg/0.0044 A s                                                    | 2000 µg/L for 0.30 A s  | 0.005 mg Ca                                              |
| 4   | Ca       | 1.0 pg/0.0044 A <sup>-</sup> s                                       | 2.0 μg/L for 0.18 A s   | none                                                     |
| 5   | Со       | 17 pg/0.0044 A <sup>-</sup> s                                        | 20 µg/L for 0.10 A s    | 0.015 mg Mg(NO <sub>3</sub> ) <sub>2</sub>               |
| 6   | Cr       | 7.0 pg/0.0044 A <sup>-</sup> s                                       | 10.0 μg/L for 0.13 A s  | 0.015 mg Mg(NO <sub>3</sub> ) <sub>2</sub>               |
| 7   | Cu       | 17 pg/0.0044 A <sup>-</sup> s                                        | 25 μg/L for 0.15 A s    | 0.005 mg Pd + 0.003 mg Mg(NO <sub>3</sub> ) <sub>2</sub> |
| 8   | Fe       | 12 pg/0.0044 A <sup>-</sup> s                                        | 20 µg/L for 0.15 A s    | 0.015 mg Mg(NO <sub>3</sub> ) <sub>2</sub>               |
| 9   | К        | 2.0 pg/0.0044 A s                                                    | 5.0 μg/L for 0.22 A s   | none                                                     |
| 10  | Mg       | 0.4 pg/0.0044 A <sup>-</sup> s                                       | 1.0 μg/L for 0.22 A s   | none                                                     |
| 11  | Mn       | 6.3 pg/0.0044 A <sup>-</sup> s                                       | 10 µg/L for 0.14 A s    | 0.005 mg Pd + 0.003 mg Mg(NO <sub>3</sub> ) <sub>2</sub> |
| 12  | Р        | 210000 pg/0.0044 A <sup>-</sup> s                                    | 20000 µg/L for 0.08 A s | 0.020 mg Pd + 0.005 mg Mg(NO <sub>3</sub> ) <sub>2</sub> |
| 13  | Zn       | 1.0 pg/0.0044 A s                                                    | 2.0 μg/L for 0.18 A s   | 0.005 mg Mg(NO <sub>3</sub> ) <sub>2</sub>               |