$\left.\begin{array}{|l|l|}\hline \text { TITLE } & \begin{array}{l}\text { STRUCTURE AND PROPERTIES OF FIBER FROM DIFFERENT PARTS OF } \\ \text { PINEAPPLE LEAF }\end{array} \\ \hline \text { AUTHOR } & \text { BUDSARAPORN SURAJARUSARN } \\ \hline \text { DEGREE } & \begin{array}{l}\text { MASTER OF SCIENCE PROGRAM IN POLYMER SCIENCE AND } \\ \text { TECHNOLOGY (INTERNATIONAL PROGRAM) }\end{array} \\ \hline \text { ADVISOR } & \text { FACULTY OF SCIENCE } \\ \hline \text { CO-ADVISOR } & \begin{array}{l}\text { TAWEECHAI AMORNSAKCHAI } \\ \text { SOMBAT THANAWAN } \\ \text { PAWEENA TRAIPERM }\end{array} \\ \hline \text { ABSTRACT } & \begin{array}{l}\text { There is a lot of agricultural waste in Thailand. One type of waste is } \\ \text { pineapple leaves. There have been many attempts in using the fiber } \\ \text { from pineapple leaves as a filler and a reinforcing material in polymer }\end{array} \\ \text { composites. The fiber is obtained from every part and position of the } \\ \text { leaves, and there are several methods to separate the fiber. } \\ \text { Therefore, the mechanical properties of the fibers may be different. } \\ \text { The information about the fiber structure and properties are very } \\ \text { important in order to fully utilize the waste leaf. In this research, the } \\ \text { structure of pineapple leaf fibers (PALF) in the transverse and } \\ \text { longitudinal directions were investigated. The fiber is a bundle of } \\ \text { many microfibers of about um in diameter, which are held together } \\ \text { with binding materials. The fiber can be separate into two categories }\end{array}\right\}$

	of the fiber from different types of leaves and parts is too small to be worth the separation of the leaves to get the best fiber.

