TITLE	INFLUENCE OF INJECTION MOLDING CONDITION ON STRUCTURE AND
	PROPERTIES OF PINEAPPLE LEAF FIBER REINFORCED NYLON 6/66
	COMPOSITE
AUTHOR	AJJIMA NOPPARUT
DEGREE	MASTER OF SCIENCE PROGRAM IN POLYMER SCIENCE AND
	TECHNOLOGY
FACULTY	FACULTY OF SCIENCE
ADVISOR	TAWEECHAI AMORNSAKCHAI
CO-ADVISOR	SOMBAT THANAWAN
ABSTRACT	The aim of this research was to investigate the use of pineapple leaf
	fiber (PALF) as a reinforcement for nylon 6/66 in injection molding.
	The research was divided in to three parts. First, the effect of injection
	parameters on the properties of nylon 6/66 was studied. The
	parameters were injection pressure and mold temperature. In the
	second part, the effect of PALF on the properties of nylon 6/66
	composites was studied. PALF was modified with sodium hydroxide
	solution and silane treatment. Injection molded specimens of nylon
	6/66 and PALF/nylon 6/66 were prepared and tested for their
	mechanical properties, molecular orientation and thermal properties.
	Non-isothermal crystallization kinetics of nylon 6/66 and its
	composites was studied on the last topic. The study was carried out
	in a differential scanning calorimeter. Injection pressure did not
	significantly affect the mechanical properties of the injection molded
	specimens. Crystals of nylon aligned both parallel and perpendicular
	to the flow. However, the lamellar were only oriented parallel to the
	flow. On the contrary, the mold temperature significantly affected the
	properties of the injection molded specimen. The tensile and flexural
	properties were improved with increasing mold temperature.
	However, the impact strength decreased. Crystal and lamellar
	orientation were similar to that observed previously. Increasing mold
	temperature also increased the tensile properties of both neat nylon
	and their composites. In the case of flexural properties, however, the
	improvement occurred only in neat hylon while the composites
	The mold temperature effected impact properties of the next puler
	hut not the compositor. DALE and lamellar clearly griented along the
	flow direction while the crystals aligned in both directions SEM
	results suggested good compatibility between fiber and hylon. Non
	isothermal crystallization behavior of the pylon and their compositor
	were described by some kinetic equations. Modified Aurami equations
	indicated that only untreated PALE and siland troated PALE retarded
	the crystallization process of nylon while sodium hydroxide did not.