Molecular Modeling Analysis for Purposing Depsidones and Diaryl Ethers from The Endophytic Fungus *Corynespora cassiicola* L36 Against *Burkholderia pseudomalle* Fabl1

Suriya Tingthong¹, Sirintip Sangsawang², Siripen Modmung², Somjintana Taweepanich², Chan Inntam², Pharit Kamsri³, Auradee Punkvang³, Sasithorn Lorroengsil¹ Jiraporn Leanpolchareanchai⁴, Narisara Chantratita⁵, Warinthorn Chavasiri⁶, Khomson Suttisintong⁷, Prasat Kittakoop^{8,9,10}, Pornpan Pungpo², Jidapa Sangswan^{1,*}

¹Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
 ²Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
 ³Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
 ⁴Faculty of Pharmacy, Mahidol University, 10400 Bangkok, Thailand
 ⁵Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 10400 Bangkok, Thailand
 ⁶Department of Chemistry, Faculty of Science, Chulalongkorn University, 10330 Bangkok, Thailand

พาการณ์

⁹Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, 10210 Bangkok, Thailand

⁷National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, 12120 Pathumthani, Thailand

⁸Chulabhorn Research Institute, 10210 Bangkok, Thailand

¹⁰Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, 10300 Bangkok, Thailand

Introduction

Melioidosis is a serious infectious disease caused by the environmental Gram-negative bacillus *Burkholderia pseudomallei* (*B. pseudomallei*). Melioidosis, is associated with a high case fatality rate in Thailand, due in part to difficulties in clinical recognition and diagnostic confirmation of the disease. Incidence of melioidosis is increasing in Northeast Thailand. *B. pseudomallei* are intrinsically resistant to antibiotics. Therefore, the potential drug to overcome drug resistant is urgently required. This study, FabI1 has been identified as novel drug target for anti-*B. pseudomallei* drug. Therefore, we aims to identify of novel FabI1 inhibitors from Thai medicinal plant to over come antibiotic resistant of *B. pseudomallei* and used as new anti-melioidosis agents.

> Materials and Methods

Results

Anti-B. pseudomallei prediction and the docking score

Table 1 Anti-B. pseudomallei prediction andthe docking score of Fabl1 inhibitors

Cpd.	Burkholderia pseudomallei	RESISTANT Burkholderia pseudomallei	Docking score (kcal/mol)	
1	-	0.098	-5.15	
2	-	-	-	
3	-	0.1017	-6.88	
4	-	-	_	
5	0.0392	0.2629	-5.95	
6	-	-	-	
7	-	0.2247	-6.92	
8	-	0.0294	-5.87	

Drug-likeness properties

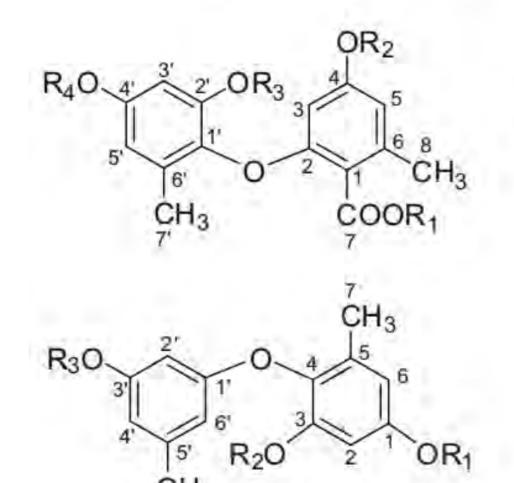
Table 2 Drug-likeness properties of Fabl1

 inhibitors

Descriptor	1	3	5	7	8
Molecular Weight	272.26	332.26	290.27	246.26	288.34
LogP	3.04	2.44	2.91	3.21	4.12
#Rotatable Bonds	0	1	3	2	5
#Acceptors	5	7	5	4	4
#Donors	2	4	4	3	0
Surface Area	114.56	134.67	120.04	104.72	124.77

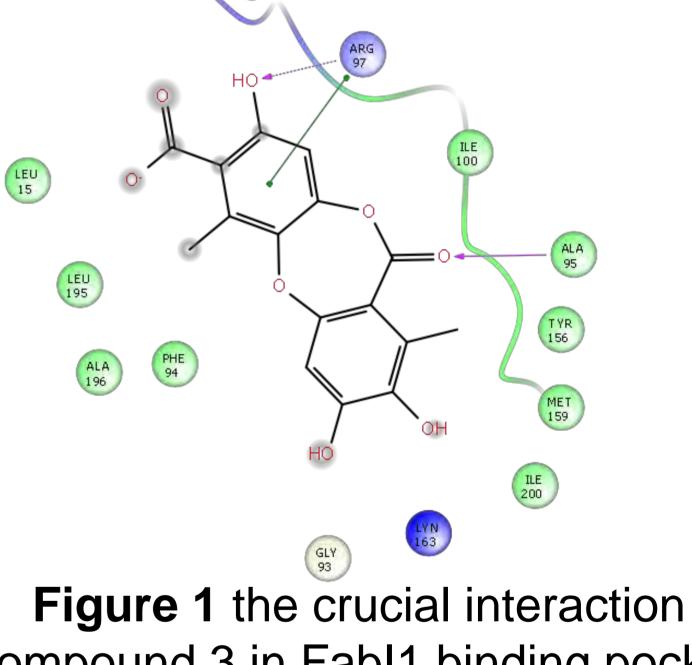
ADMET properties

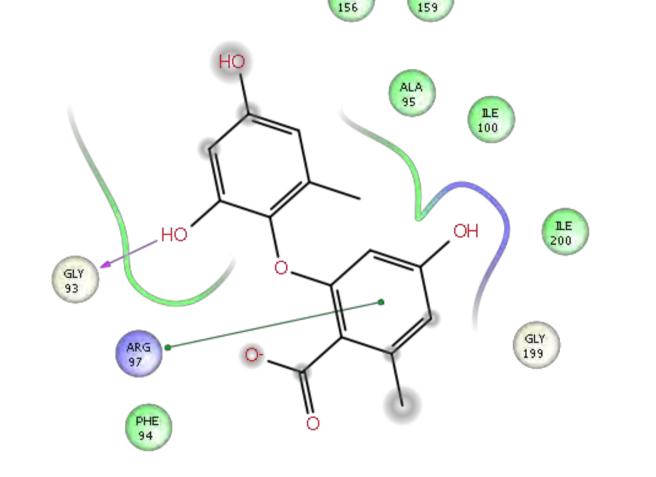
Table 3 The predicted ADMET properties of Fabl1 inhibitors


Model Name	4	2	5	7	0	l l mit
Modol Namo	P		5			l Init

The binding mode and binding interactions

Reported Structure of natural products from Corynespora cassiicola L36 Antibacterial Prediction Molecular Docking Calculations


1, $R_1 = H$, $R_2 = H$, $R_3 = H$, $R_4 = H$ **2**, $R_1 = H$, $R_2 = Me$, $R_3 = H$, $R_4 = Me$ **3**, $R_1 = OH$, $R_2 = H$, $R_3 = COOH$, $R_4 = H$ **4**, $R_1 = OMe$, $R_2 = Me$, $R_3 = COOMe$, $R_4 = Me$

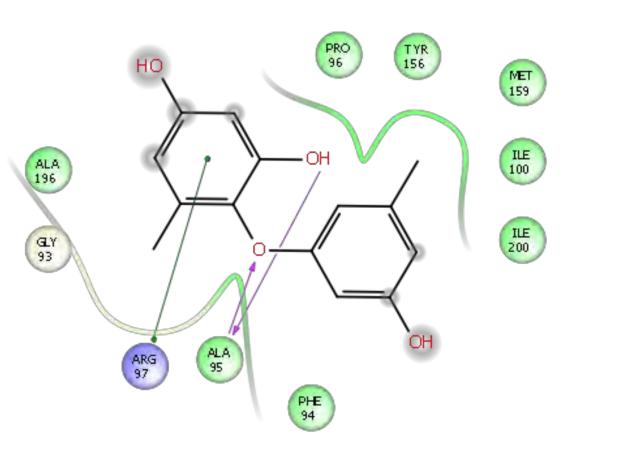

5, $R_1 = H$, $R_2 = H$, $R_3 = H$, $R_4 = H$ **6**, $R_1 = Me$, $R_2 = Me$, $R_3 = Me$, $R_4 = Me$

7, $R_1 = H$, $R_2 = H$, $R_3 = H$ 8, $R_1 = Me$, $R_2 = Me$, $R_3 = Me$

Model Name	1	3	5	7	8	Unit
Absorption						
Water solubility	-3.63	-3.22	-2.99	-3.06	-5.07	log mol/L
Caco2 permeability	1.01	1.00	0.41	0.80	1.27	log Papp in 10 ⁻⁶ cm/s
Intestinal absorption (human)	92.09	54.92	59.09	91.75	97.43	
Skin Permeability	-2.79	-2.74	-2.74	-2.77	-2.59	log Kp
P-glycoprotein substrate	Yes	Yes	Yes	Yes	No	
P-glycoprotein I inhibitor	No	No	No	No	No	
P-glycoprotein II inhibitor	No	No	No	No	No	
Distribution						
VDss (human)	-0.13	0.07	-0.97	0.02	0.07	
Fraction unbound (human)	0.22	0.27	0.22	0.20	0.13	Fu
BBB permeability	-0.12	-1.47	-1.25	-0.88	-0.02	log BB
CNS permeability	-1.97	-3.42	-3.13	-2.12	-1.57	log PS
Metabolism						
CYP2D6 substrate	No	No	No	No	No	
CYP3A4 substrate	No	No	No	No	Yes	
CYP1A2 inhibitior	Yes	No	No	Yes	Yes	
CYP2C19 inhibitior	Yes	No	No	Yes	Yes	
CYP2C9 inhibitior	No	No	No	Yes	Yes	
CYP2D6 inhibitior	No	No	No	No	No	
CYP3A4 inhibitior	No	No	No	No	No	
Excretion						
Total Clearance	0.60	0.69	0.65	0.57	0.75	log ml/min/kg
Renal OCT2	No	No	No	No	No	
substrate		INU	INU			
Toxicity						
AMES toxicity	Yes	Yes	No	Yes	No	
Max. tolerated dose (human)	0.59	1.12	1.24	0.24	1.30	log mg/kg/day
hERG I inhibitor	No	No	No	No	No	
hERG II inhibitor	No	No	No	No	No	
Oral Rat Acute Toxicity (LD50)	2.34	2.51	2.42	2.26	2.36	mol/kg
Oral Rat Chronic Toxicity (LOAEL)	1.60	2.23	2.80	1.86	2.12	log mg/kg_bw/day
Hepatotoxicity	No	No	No	No	No	
Skin Sensitisation	No	No	No	No	No	
T.Pyriformis toxicity	0.42	0.29	0.29	0.60	1.04	log ug/L
Minnow toxicity	1.11	1.67	0.76	0.55	-0.43	

compound 3 in Fabl1 binding pocket

- Five compounds based on were identified as potential FabI1 inhibitors which displayed the biological activity prediction against resistant- *Burkholderia pseudomallei* (0.0294 0.2629).
 The binding affinity based on docking score raining from -5.15 to 6.92 kcal/mol.
- 2,3',4-Trihydroxy-5',6-dimethyldiphenyl ether was highest binding affinity which shown H-bond interaction with NH and an oxygen carbonyl of Gly96 backbone in Fabl1 binding site.


Acknowledgements

Conclusions

Ubon Ratchathani University
 Faculty of Science, Ubon Ratchathani University
 National Electronics and Computer Technology Center (NECTEC)

ALA 196 LEU 195

Figure 2 the crucial interaction compound 5 in Fabl1 binding pocket

Figure 3 the crucial interaction compound 7 in Fabl1 binding pocket