Flavans from Desmos cochinchinensis as Highly Potent Fabl1 Inhibitors of Burkholderia pseudomallei: In silico based Rational Design Approaches

<u>Jidapa Sangswan^{1,*}, Sirintip Sangsawang², Siripen Modmung², Somjintana Taweepanich², Chan Inntam², Pharit Kamsri³, Auradee Punkvang³, Sasithorn</u> Lorroengsil¹, Jiraporn Leanpolchareanchai⁴, Narisara Chantratita⁵, Warinthorn Chavasiri⁶, Khomson Suttisintong⁷, Prasat Kittakoop^{8,9,10}, Pornpan Pungpo²

¹Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

²Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

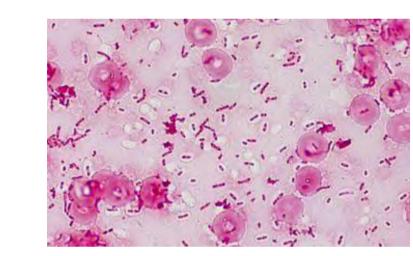
³Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand

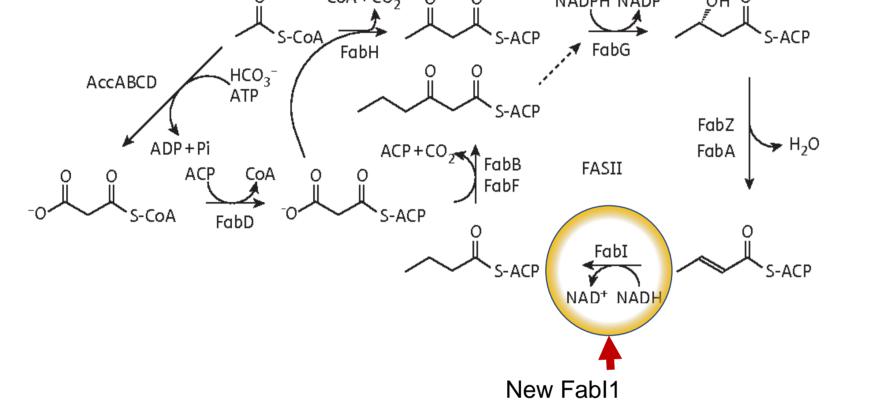
⁴Faculty of Pharmacy, Mahidol University, 10400 Bangkok, Thailand

⁵Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 10400 Bangkok, Thailand

⁶Department of Chemistry, Faculty of Science, Chulalongkorn University, 10330 Bangkok, Thailand

⁷National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, 12120 Pathumthani, Thailand


⁸Chulabhorn Research Institute, 10210 Bangkok, Thailand


⁹Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, 10210 Bangkok, Thailand

Introduction

Burkholderia pseudomallei (B. pseudomallei) is a Gram-negative soildwelling bacillus that causes melioidosis, a frequently fatal infectious disease, in tropical and subtropical regions. Melioidosis is highly endemic in Thailand. Incidence of melioidosis is increasing in Northeast Thailand. B. pseudomallei are intrinsically resistant to antibiotics such as penicillin, ampicillin, first- and second-generation cephalosporins, gentamicin, tobramycin, and streptomycin. Therefore, the potential drug to overcome drug resistant is urgently required. This study, Fabl1 has been identified as novel drug target for anti- B. pseudomallei drug. Therefore, we aims to identify of novel Fabl1 inhibitors from Thai medicinal herb to over come antibiotic resistant of B. pseudomallei.

nibitors

Results

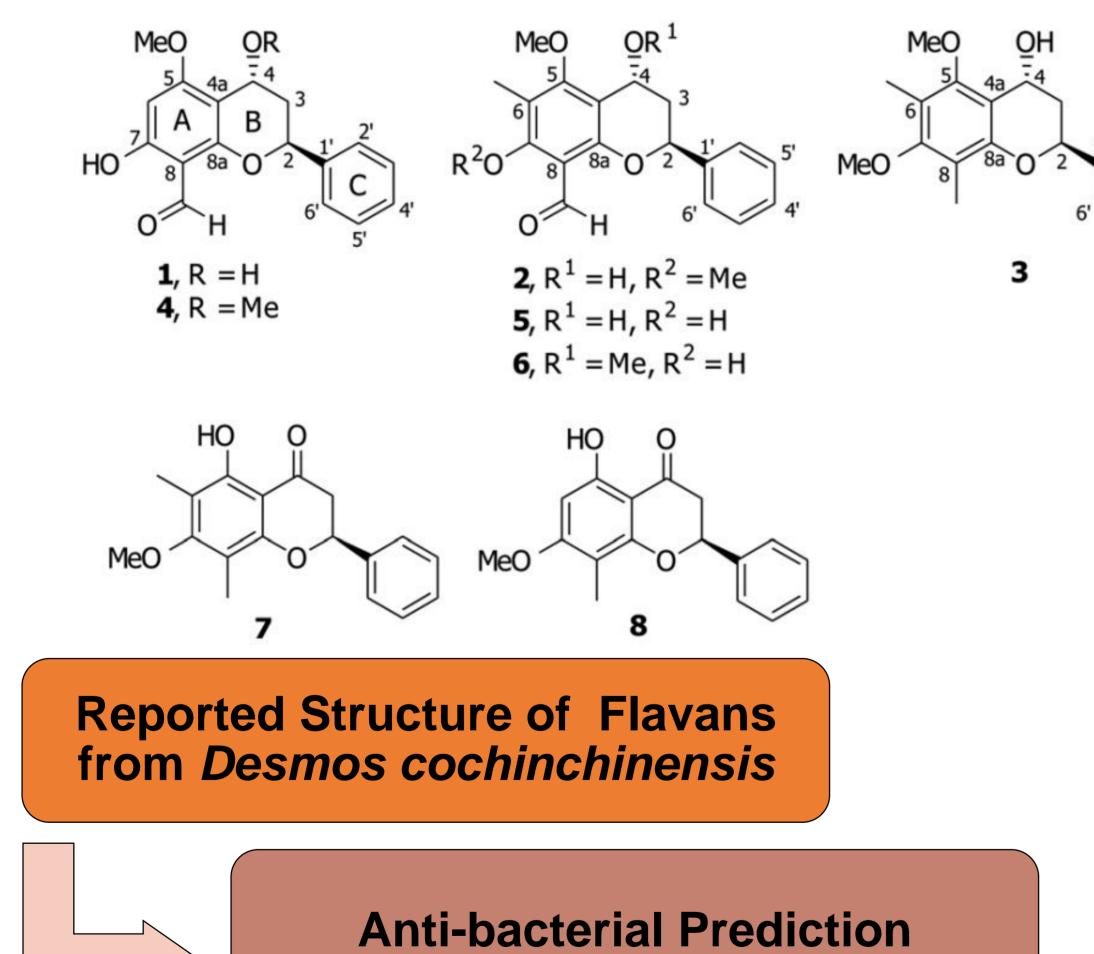
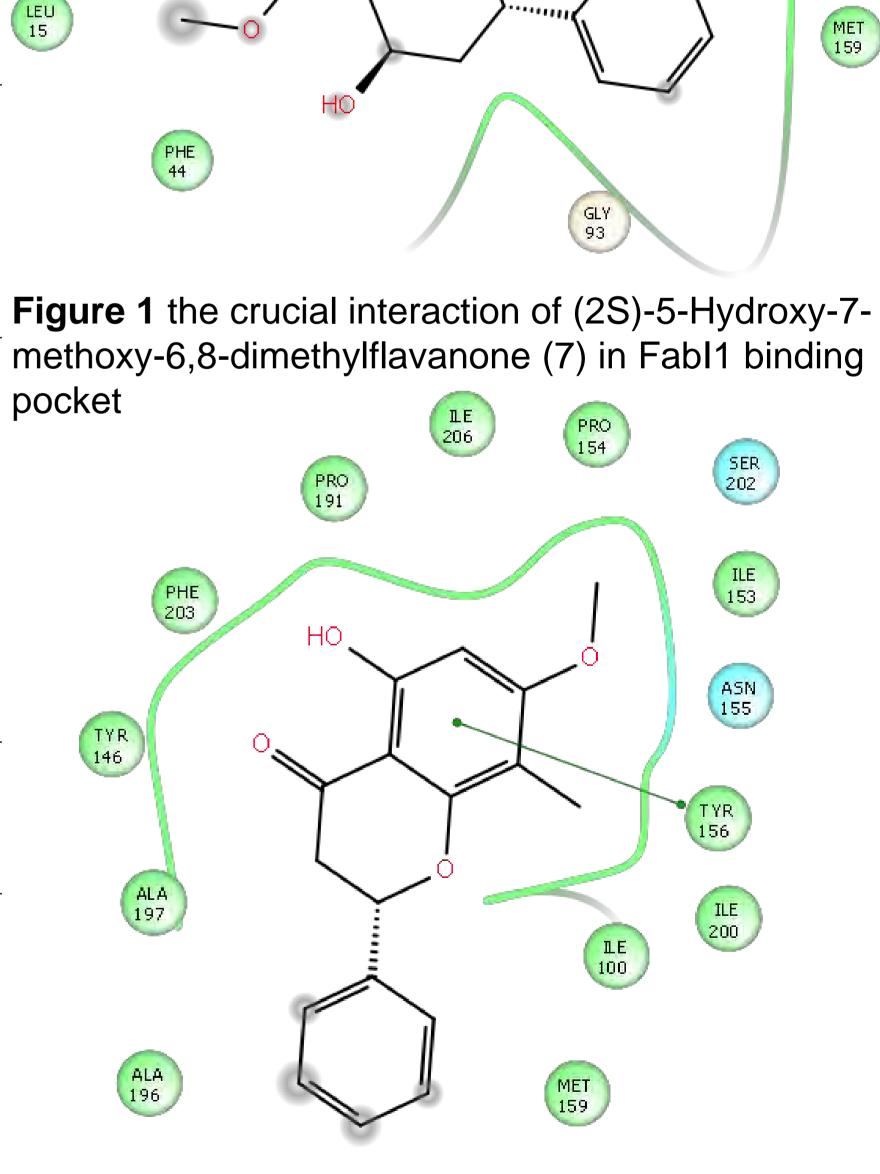
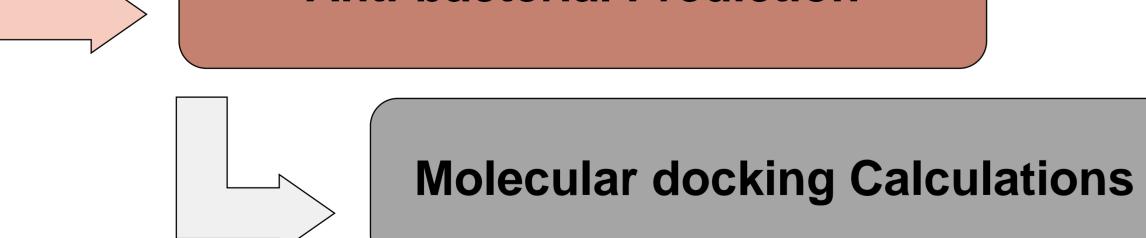
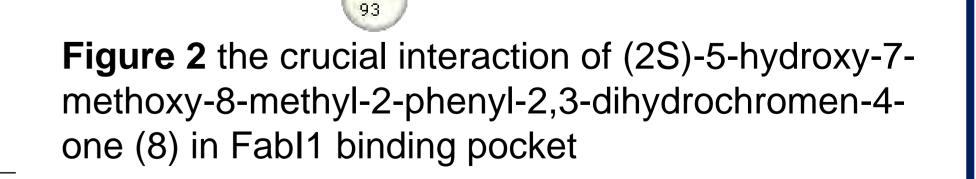

The docking score, anti-B. pseudomallei prediction, and drug-likeness properties

Table 1 The docking score, anti-*B. pseudomallei* prediction, and drug-likeness properties of Cpd.7 and Cpd.8


Cpd.	docking score (kcal/mol)	RESISTANT <i>B. pseudomall</i>	oi Wei	cular ight Lo nol)	DAP	Rotatable Bonds	#Acceptors	#Donors	Surface Area
7	-10.074	0.0204	298	3.34 3	.72	2	4	1	128.86
8	-8.495	0.0912	284	4.31 3	.42	2	4	1	122.49
Α	DMET propert	ies			The bi	nding m	ode and bir	nding inte	ractions
Mod	le 2 The predicted <i>i</i>	7	8	Unit			ARG GLY 97 199	ALA	
	orption er solubility	-4.37	-4.04	(log mol/L		LEU 195	ò	ALA 196	
Cac	o2 permeability	1.34	1.33 log	Papp in 10 ⁶	cm/s		-0	PHE ALA	
Intes	stinal absorption (hu		93.79	% Absorbed				94 95	2
Skin	Permeability	-3.13	-3.06	log Kp					ILE 100
P-gl	ycoprotein substrate	e No	No						
P-gl	ycoprotein I inhibito	r No	No		LEU		/)	·····	




Materials and Methods

r-giycopiotein rinnbitoi	INU	INU	
P-glycoprotein II inhibitor	No	No	
Distribution			
VDss (human)	0.23	0.06	log L/kg
Fraction unbound (human)	0.09	0.10	Fu
BBB permeability	-0.41	-0.41	log BB
CNS permeability	-1.86	-1.934	log PS
Metabolism			
CYP2D6 substrate	No	No	
CYP3A4 substrate	No	No	
CYP1A2 inhibitior	Yes	Yes	
CYP2C19 inhibitior	Yes	Yes	
CYP2C9 inhibitior	Yes	Yes	
CYP2D6 inhibitior	No	No	
CYP3A4 inhibitior	Yes	Yes	
Excretion			
Total Clearance	0.17	0.17	log ml/min/kg
Renal OCT2 substrate	No	No	
Toxicity			
AMES toxicity	Yes	Yes	
Max. tolerated dose (human)	0.28	0.18	log mg/kg/day
hERG I inhibitor	No	No	
hERG II inhibitor	No	Yes	
Oral Rat Acute Toxicity (LD50)	2.45	2.35	mol/kg
Oral Rat Chronic Toxicity (LOAEL)	1.79	1.85	log mg/kg_bw/day
Hepatotoxicity	No	No	
Skin Sensitisation	No	No	
T.Pyriformis toxicity	1.03	1.03	log ug/L
Minnow toxicity	-0.34	0.16	log mM

Conclusions

(2S)-5-Hydroxy-7-methoxy-6,8-dimethylflavanone (7) and (2S)-5-hydroxy-7-methoxy-8-methyl-2-phenyl-2,3-dihydrochromen-4-one (7) extracted from Desmos cochinchinensis were promising compounds with the anti-bacterial prediction against resistant-B. pseudomallei ranging from 0.0204-0.0912. The highest binding affinity was found between flavan compound 7 (-10.07 kcal/mol) with *B. pseudomallei* Fabl1 and hydrogen bond interaction between hydroxyl (OH) with an oxygen carbonyl backbone of Gly93 and pi-pi interaction of phenyl ring with Phe203 sidechain were suggested as the crucial interaction for binding.

Acknowledgements

Ubon Ratchathani University

Faculty of Science, Ubon Ratchathani University National Electronics and Computer Technology Center (NECTEC)

16th International Online Mini-Symposium of the Protein Society of Thailand, November 17-18, 2021