Screening of JAK2 Inhibitors from Natural Curcumin and Its Derivatives as Erythropoiesis Stimulant Agents for Thalassemia Therapy: **Computer Aided Molecular Design Approaches**

Somjintana Taweepanich¹*, Sirintip Sangsawang¹, Siripen Modmung¹, Chan Inntam¹, Pharit Kamsri², Auradee Punkvang², Khomson Suttisintong³, Pornpan Pungpo¹, Kanjana Pangjit⁴

> ¹ Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand ² Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand ³ National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani, Thailand ⁴ College of Medicine and Public Health, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani, 34190, Thailand

> > *Email: somjintana.t@ubu.ac.th

https://www.endonews.com/member files/object files/endonews.com/2020/07 22/Iron-Overload.jpg

Dissociation of STATs from cytokine recepto of STATs JAK inhibition reduces production of pro-inflammatory cytokines imerzied STAT JAK inhibito agent STAT cascade https://www.youtube.com/watch?v=dnnsgiDjAgM

Janus kinase 2 (JAK2) is an enzyme responsible for regulating erythropoiesis and has been validated as a novel therapeutic process for thalassemia.

Materials and Methods

Curcuminoid analog

To developed curcumin and its derivatives as JAK2 inhibitors and erythropoiesis stimulant agents

Virtual screening Biological predictions Pharmacokinetic predict

□ **Biological activity prediction and molecular docking studies**

Table 1 The results of the erythropoiesis stimulant activity using PASS online prediction and the docking score from molecular docking calculations

	Compound	Structures	Erythro stimulant	opoiesis t activity	Docking Score (kcal/mol)	
			Pa	Pi		
	1		0.307	0.172	-12.086	Curcuminoid analog
	2	но он	0.332	0.144	-11.364	European Journal of Medicinal Chemistry 45 (2010) 4446e4457
	3	НО ОН	0.273	0.216	-11.326	64 Cpd.
	4		0.273	0.216	-11.001	PASS online Erythropoiesis stimulant
٦	5		0.334	0.143	-10.634	28 Cpd.
5	6		0.298	0.182	-10.618	pkCSM
	7		0.274	0.213	-10.510	Pharmacokinetic properties (ADMET) 11 Cpd.
	8	но он	0.267	0.224	-10.449	Glide XP program
	9	но он	0.523	0.031	-10.084	Molecular Docking Calculations PDB code: 4D0X
	10		0.279	0.207	-9.948	Figure 2 The virtual screening

0.353 0.124 -9.650 derivatives to be JAK2 inhibitors

□ The pharmacokinetic properties (ADMET) prediction

Table 2 The results of ADMET prediction of hit compounds

Compound	1	2	3	4	5	6	7	8	9	10	11	-	
Caco2 permeability	1.113	1.079	1.135	1.07	1.096	0.915	0.923	1.103	1.084	1.158	1.152	Caco 2 > 0.90	
Intestinal absorption (human)	92.9	92.394	92.172	92.37	95.146	89.844	92.74	88.96	92.183	92.523	97.999	high Caco2 permeability	
Pgp inhibition	Yes	No	Yes	Yes									
BBB permeability	-0.314	-0.35	-0.286	-0.285	-0.685	-1.19	-0.973	-0.854	-0.123	-0.259	-0.793	Intestinal absorption	
CNS permeability	-2.603	-2.655	-2.486	-2.459	-3.011	-3.162	-3.042	-2.295	-2.322	-2.37	-2.971	(human) < 30% is considered to be poorly	
CYP2D6 substrate	No												
CYP3A4 substrate	Yes	No	No	Yes	Yes	ausoiveu							
CYP2C19 inhibitior	Yes	RRR > 0.3											
CYP2C9 inhibitior	Yes	can readily cross the blood-											
CYP2D6 inhibitior	No	brain											
CYP3A4 inhibitior	Yes	BBB < -1											
Total Clearance (ml/min/kg)	0.271	0.364	0.244	0.145	0.149	0.431	0.432	0.145	0.044	0.14	0.188	poorly distributed to the brain	
Renal OCT2 substrate	No												
AMES toxicity	No	Yes	No	No	CNS > -2								
hERG inhibitor	Yes	Yes	No	Yes	Yes	No	No	No	Yes	No	No	Nervous System (CNS)	
Oral Rat Acute Toxicity	2	2 003	2 016	2 064	2 155	2 468	2 396	2 288	1 851	2 032	2 233	CNS < -3	
(LD_{50})		2.005	2.010	2.007	2.133	2.400	2.370	2.200	1.051	2.032	2.233	unable to penetrate the CNS	
Hepatotoxicity	No	_											

□ The binding mode and binding interactions of active compounds in JAK2 binding pocket

Figure 1 The virtual screening process of natural curcumin and its derivatives to be JAK2 inhibitors

Conclusions

- Eleven curcumin derivatives will be act as JAK2 inhibitors with the high binding affinity in JAK2 binding site docking score ranging from –9.65 to -12.09 kcal/mol.
- H-bond interaction with NH backbone of Leu932 and sigma-pi interaction of aromatic ring on curcumin analog with Leu983 sidechain
- The ADMET predictions suggested that curcumin derivatives were suitable for acting as drug.
- These finding results aid to collect the potential compounds for biological assay evaluations and development as novel drug for thalassemia therapy based on JAK2 inhibition mechanism.

16th International Online Mini-Symposium of the Protein Society of Thailand, November 17-18, 2021

Figure 3 The binding mode of natural curcumin (a) compound 1 and (b) compound 2 in JAK2 binding pocket

Acknowledgments

- □ National Science, Research and Innovation Fund (NSRF) □ Faculty of Science, Ubon Ratchathani University Ubon Ratchathani University Nakhon Phanom University
- □ National Electronics and Computer Technology Center (NECTEC)