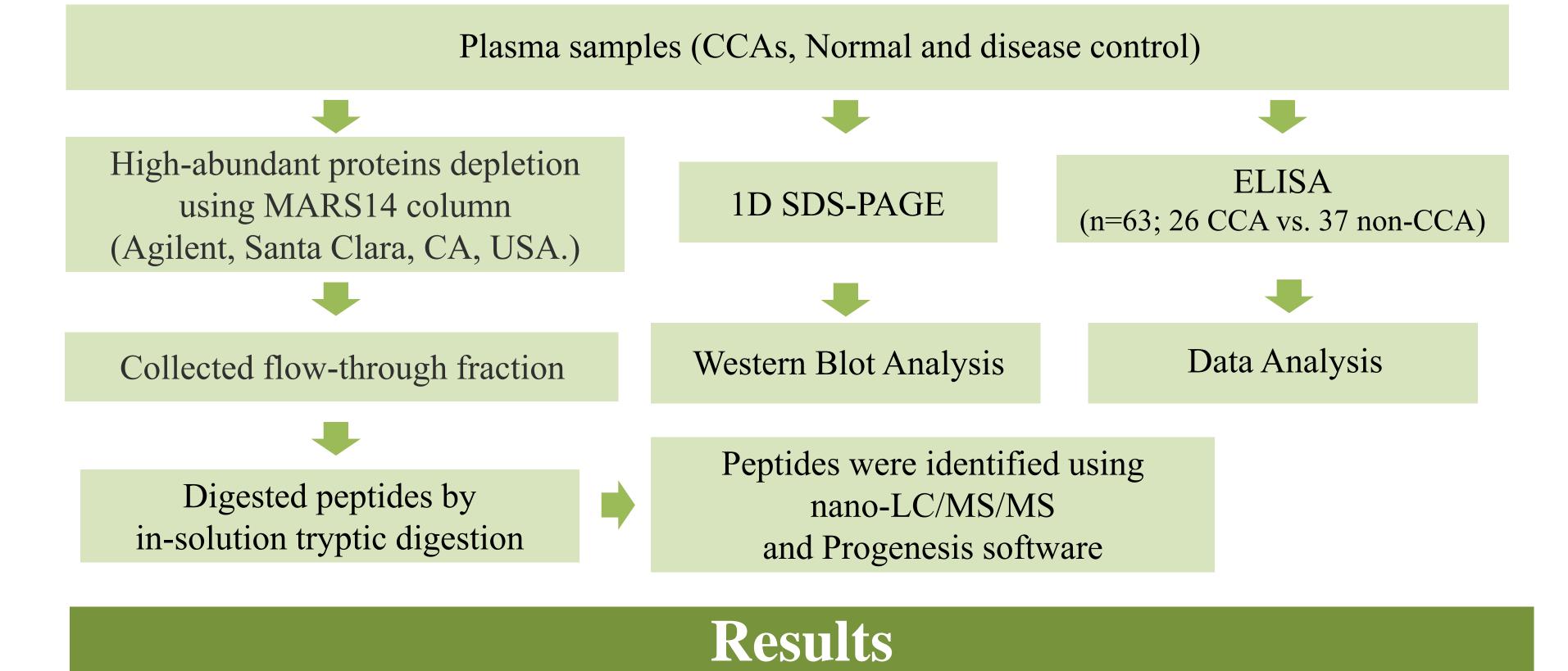


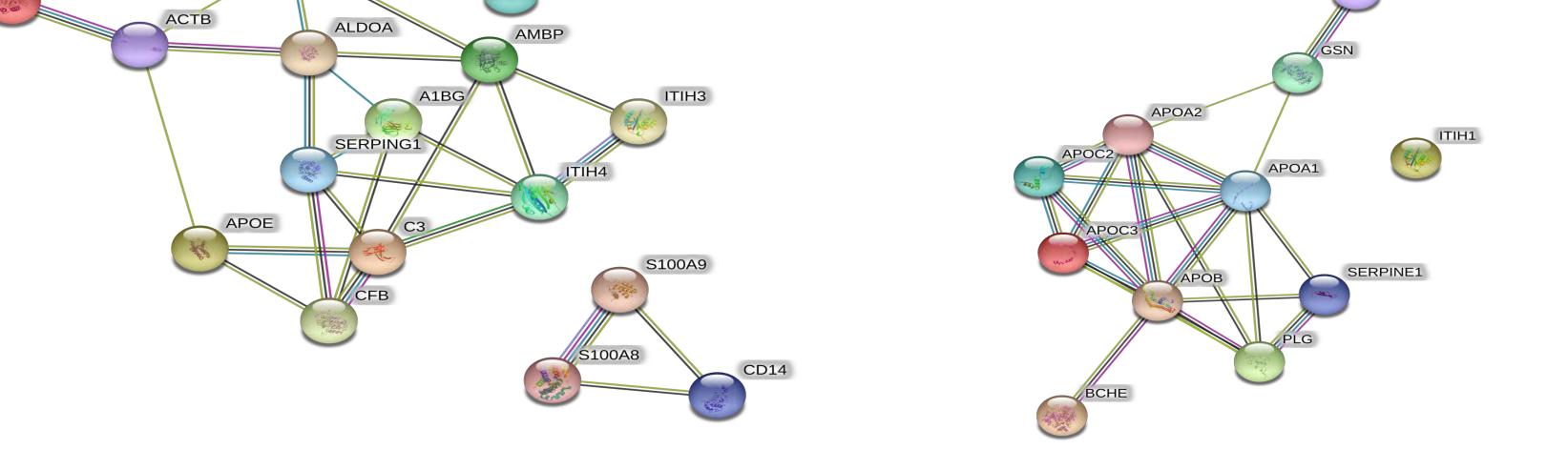
PLASMA PROTEOMIC PROFILING IDENTIFIES NOVEL BIOMARKERS FOR CHOLANGIOCARCINOMA



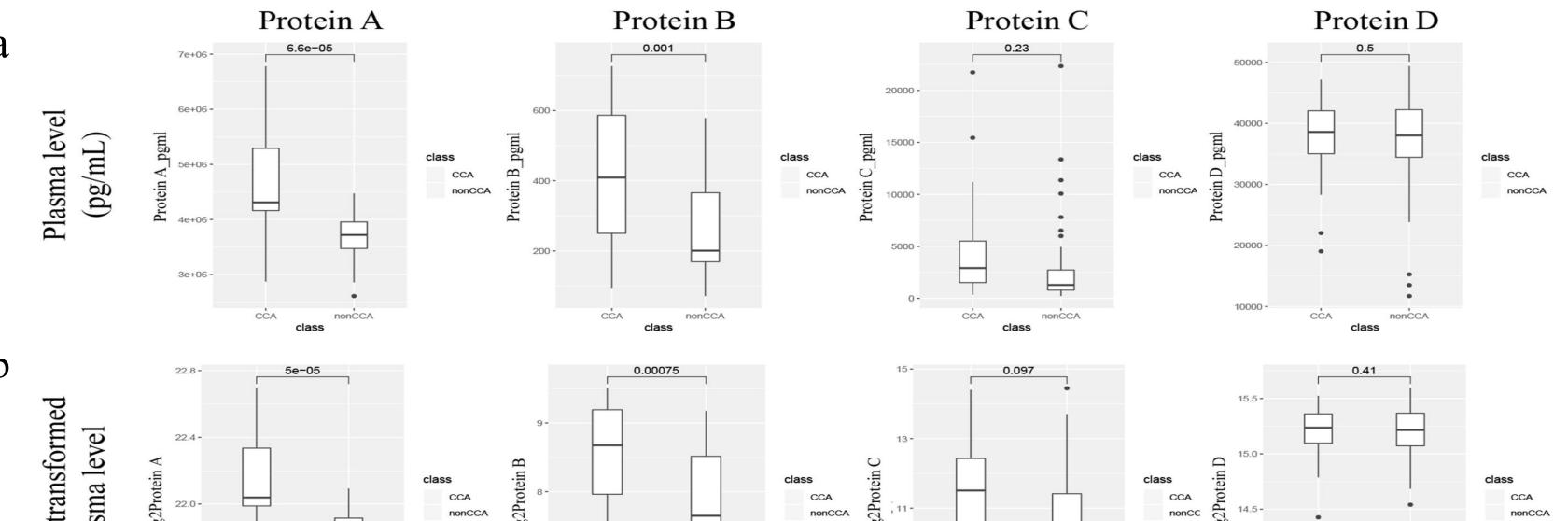
<u>Thanyanan Watcharathanyachat</u>¹, Daranee Chokchaichamnankit¹, Churat Weeraphan¹, Somchai Chutipongtanate², Jisnuson Svasti^{1,3} and Chantragan Srisomsap^{1,*}

¹Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand; ²Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; ³Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand

Introduction

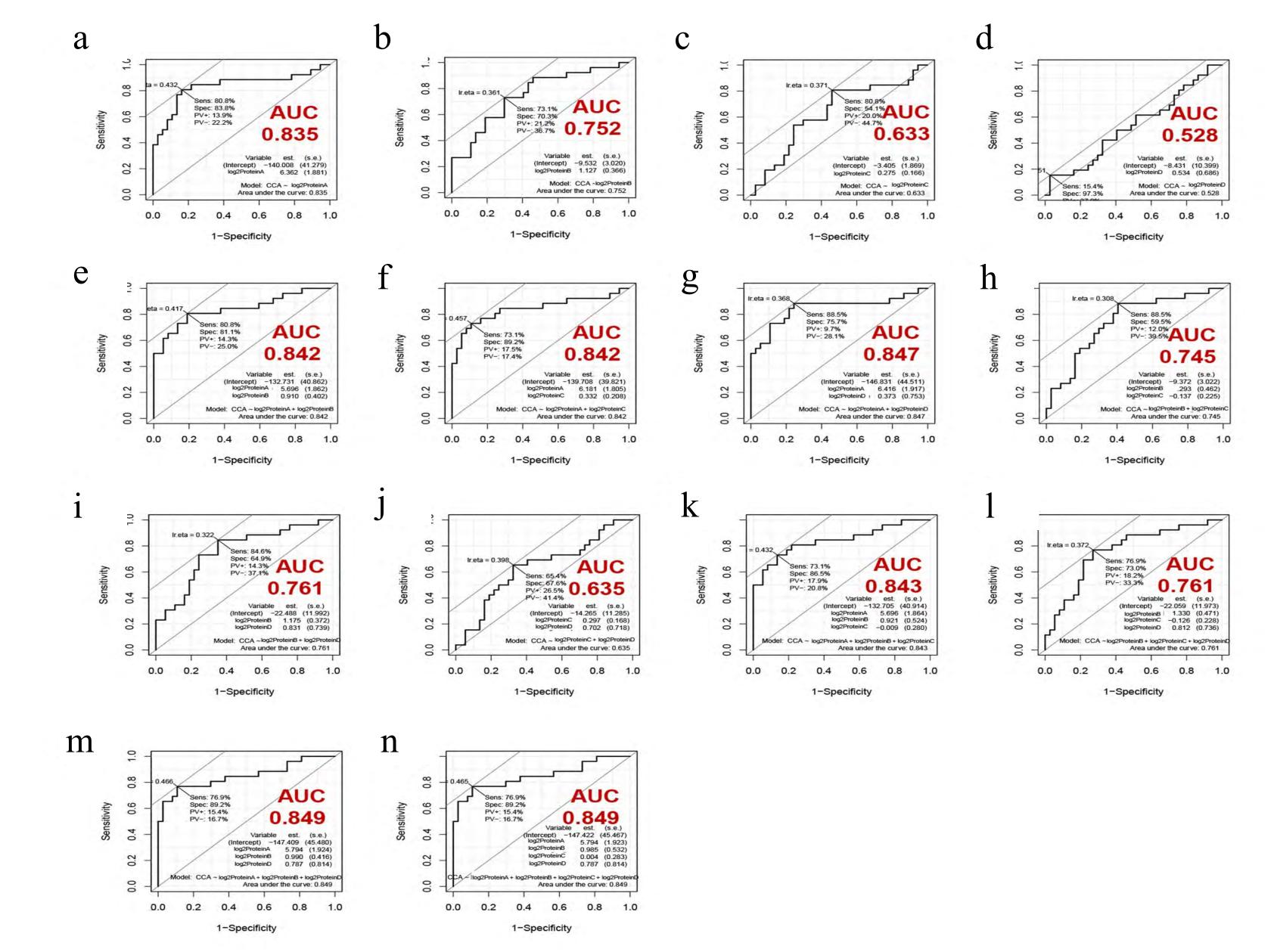

Cholangiocarcinoma (CCA) is one of the highly aggressive malignant tumors that arise from the cholangiocytes lining biliary trees. This type of cancer represents 10–25% of primary liver cancers worldwide and is highly prevalent in Asian countries including Thailand. CCA is highly lethal because most are locally advanced at patient presentation where therapies have limited benefit. Currently available tumor markers, e.g., CA19-9 and CEA, are not specific to CCA, thereby novel CCA biomarker is an unmet need. This study explored the feasibility of a translational proteomic approach on CCA biomarkers discovery. The list of possible candidates were obtained from our previous studies, together with the label-free quantitation. Proteins of interest were selected and translated into clinically compatible ELISA immunoassay for CCA biomarker investigation.

Methods


Table 1 Differentially expressed plasma proteins in cholangiocarcinoma patients identified by nano-LC-MS/MS compared with normal control subjects.

Up-regulated					
Accession	Protein Name	MW	Score]	Fold chang	ge Function
S10A8 HUMAN	Protein S100-A8	10.89	261.89	U	Inflammatory response
Protein A	Protein A	13.29	326.65	2.14	Inflammatory response
APOE HUMAN	Apolipoprotein E	36.25	821.02	2.11	Metabolism
					Cellular process/ complement

h


Figure 1. Protein-protein interactions of proteins with 1.25 fold expression (a: more than 1.25 fold, b: less than 1.25 fold) were predicted by STRING. Colors: Green gene neighborhood; red gene fusion; blue co-occurrence; black co-expression; purple experiments; cyan databases; yellow text mining; and grey homology.

CO3_HUMAN	Complement C3	188.57	156.54	1.75	activation/ proteolysis
IC1_HUMAN	Plasma protease C1 inhibitor	55.35	585.7	1.67	Blood coagulation
B2MG_HUMAN	Beta-2-microglobulin	13.82	158.71	1.67	FNA, function not assigned
Protein D	Protein D	39.89	814.23	1.53	Metabolism
ACTB_HUMAN	Actin, cytoplasmic 1	42.05	223.21	1.38	Cell motility and contraction
	Inter-alpha-trypsin inhibitor heavy chain				
ITIH3_HUMAN	H3	100.07	504.52	1.37	FNA, function not assigned
ALDOA_HUMAN	Fructose-bisphosphate aldolase A	39.85	44.38	1.33	Glycolysis and gluconeogenesis
	Inter-alpha-trypsin inhibitor heavy chain				
ITIH4_HUMAN	H4	103.52	2297.37	1.32	Metabolism
TRIPB_HUMAN	Thyroid receptor-interacting protein 11	228.13	42.94	1.31	Protein glycosylation
A1BG_HUMAN	Alpha-1B-glycoprotein	54.79	1680.61	1.27	FNA, function not assigned
CD14_HUMAN	Monocyte differentiation antigen CD14	40.68	169.51	1.26	Protein binding
CFAB_HUMAN	Complement factor B	86.85	1965.83	1.25	Complement activation
PROF1_HUMAN	Profilin-1	15.22	50.91	1.25	FNA, function not assigned
Down-regulated					
GELS_HUMAN	Gelsolin	86.04	1212.38	0.78	Ciliogenesis
	Inter-alpha-trypsin inhibitor heavy chain				
ITIH1_HUMAN	H1	101.78	1312.09	0.77	hyaluronan metabolic process
	Serine/threonine-protein phosphatase PP1-				
PP1A_HUMAN	alpha catalytic subunit	38.23	46.89	0.76	FNA, function not assigned
PLMN_HUMAN	Plasminogen	93.25	2104.49	0.70	Proteolysis
APOC2_HUMAN	Apolipoprotein C-II	11.28	71.84	0.64	Lipid metabolic process
CHLE_HUMAN	Cholinesterase	68.94	88.39	0.62	FNA, function not assigned
					Enzyme activator activity/ homeostatic
APOC3 HUMAN	Apolipoprotein C-III	10.85	202.08	0.38	process

York York

Figure 2. Candidate biomarkers in CCA (n = 26) vs. non-CCA (n = 37; 17 disease controls, 20 healthy individuals) as measured by ELISA. a, plasma levels (pg/mL) b, log2 transformation was performed to adjust normal data distribution.

Conclusions

Translational proteomic approach is feasible for CCA biomarker investigation. It also provides multiple potential biomarkers for clinical diagnosis.
ROC showed that protein A had higher performance with the area under the curve (AUC) of 0.835 (80.8% sensitivity, 83.8% specificity) as compared to other proteins.
The combination of A, B and D proteins hold good promise as a potential multiplexing biomarker of CCA.
With this investigation, further studies on these proteins should be validated in an independent cohort or multicenter study.

References

- Verathamjamras C., et al. Secretomic profilling of cells from hollow fiber bioreactor reveals PSMA3 as a potential cholangiocarcinoma biomarker. Int J Oncol. 2017 Jul;51(1):269-280.
- Janvilisri T., et al. Novel Serum Biomarkers to Differentiate Cholangiocarcinoma from Benign Biliary Tract Diseases Using a Proteomic Approach. Hindawi Publishing Corporation . Vol. 2015, 11 pages.
- G.L. Tyson, H.B. El-Serag. Risk factors for cholangiocarcinoma. Hepatology, 54 (2011), pp. 173-184.

Figure 3. Diagnostic performance of candidate biomarkers in a study cohort. a, log2(Protein A); b, log2(Protein B); c, log2(Protein C); d, log2(Protein D); e, log2(Protein A)+log2(Protein B); f, log2(Protein A)+log2(Protein C); g, log2(Protein A)+log2(Protein D); h, log2(Protein B)+log2(Protein C); i, log2(Protein B)+log2(Protein D); j, log2(Protein C)+log2(Protein D); k, log2(Protein A)+log2(Protein B)+log2(Protein C); l, log2(Protein B)+log2(Protein C); n, log2(Protein A)+log2(Protein B)+log2(Protein D); n, log2(Protein A)+log2(Protein B)+log2(Protein B)+log2(

Acknowledgements

Supported by the Chulabhorn Research Institute