

International Online Mini-Symposium of the Protein Society of Thailand

Molecular docking study of benzosuberone-thiazole derivatives for rational design of novel GyrB inhibitors as anti-tuberculosis agents

<u>Bongkochawan Pakamwong¹, Bundit Kamsri¹, Paptawan Thongdee¹, Naruedon Phusi¹, Somjintana Taveepanich¹, Jidapa sangswan², Pharit Kamsri³,</u> Auradee Punkvang³, Patchreenart Saparpakorn⁴, Supa Hannongbua⁴, Jiraporn Leanpolchareanchai⁵, Khomson Suttisintong⁶, Prasat Kittakoop^{7,8,9}, James Spencer¹⁰, Adrian J. Mulholland¹¹, Pornpan Pungpo^{1,*}

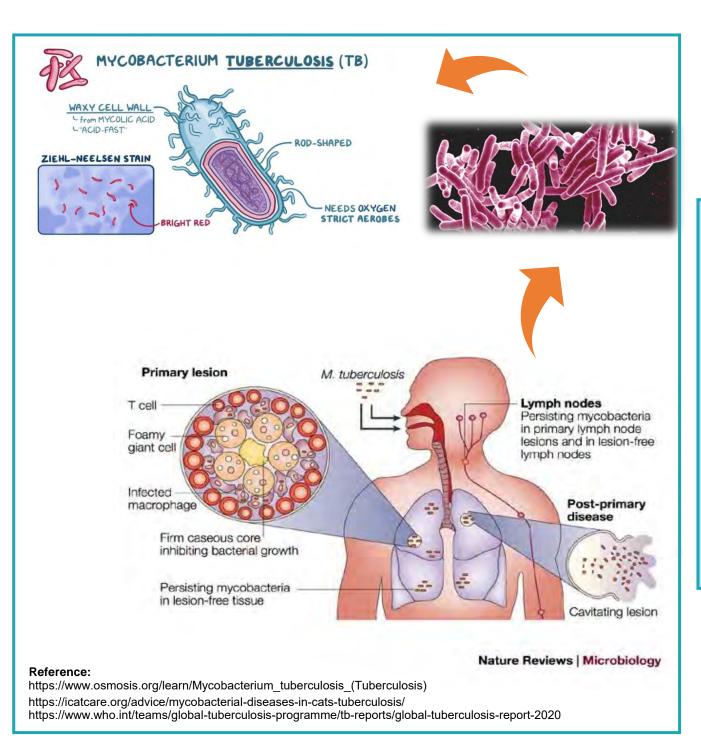
World Health

^organization

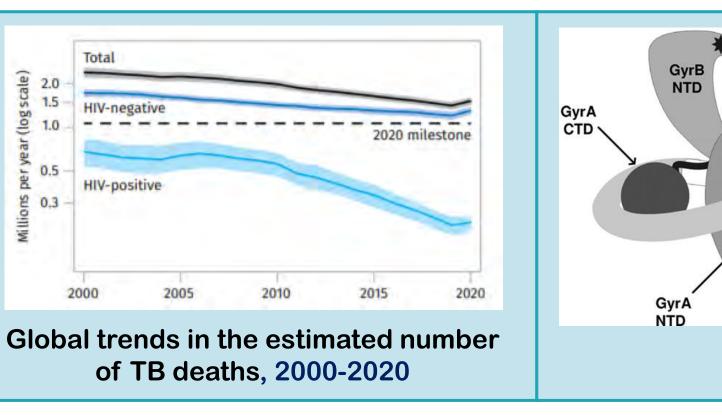
DNA gyrase

¹Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand ²Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand ³Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand ⁴Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand ⁵Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand ⁶National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand ⁷Chulabhorn Research Institute, Bangkok 10210, Thailand ⁸Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Bangkok 10210, Thailand

- ⁹Center of Excellence on Environmental Health and Toxicology (EHT)
- ¹⁰School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, United Kingdom
- ¹¹Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom *Email: pornpan_ubu@yahoo.com



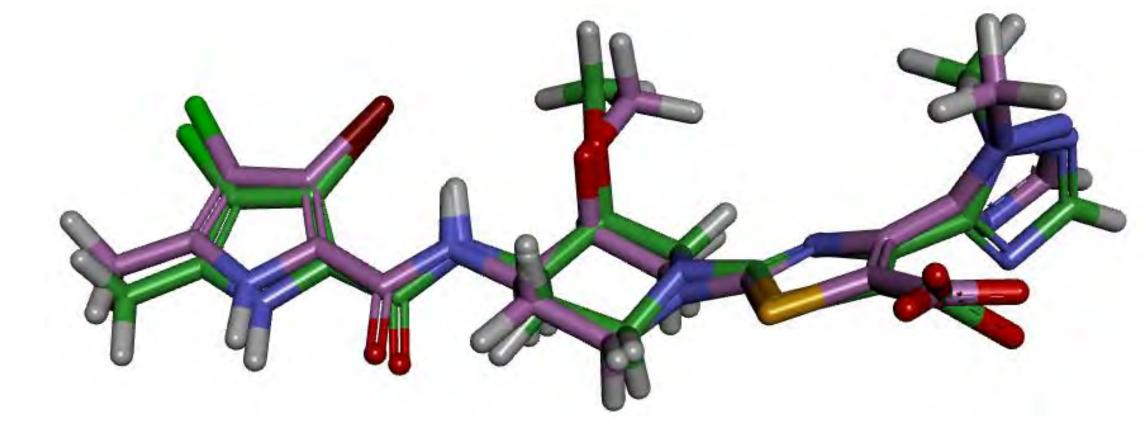
INTRODUCTION


Tuberculosis (TB), caused by *Mycobacterium tuberculosis* (*M. tuberculosis*), has remained a major global health problem.

Therefore, discover of new inhibitors are potential GyrB urgent to overcome this drug

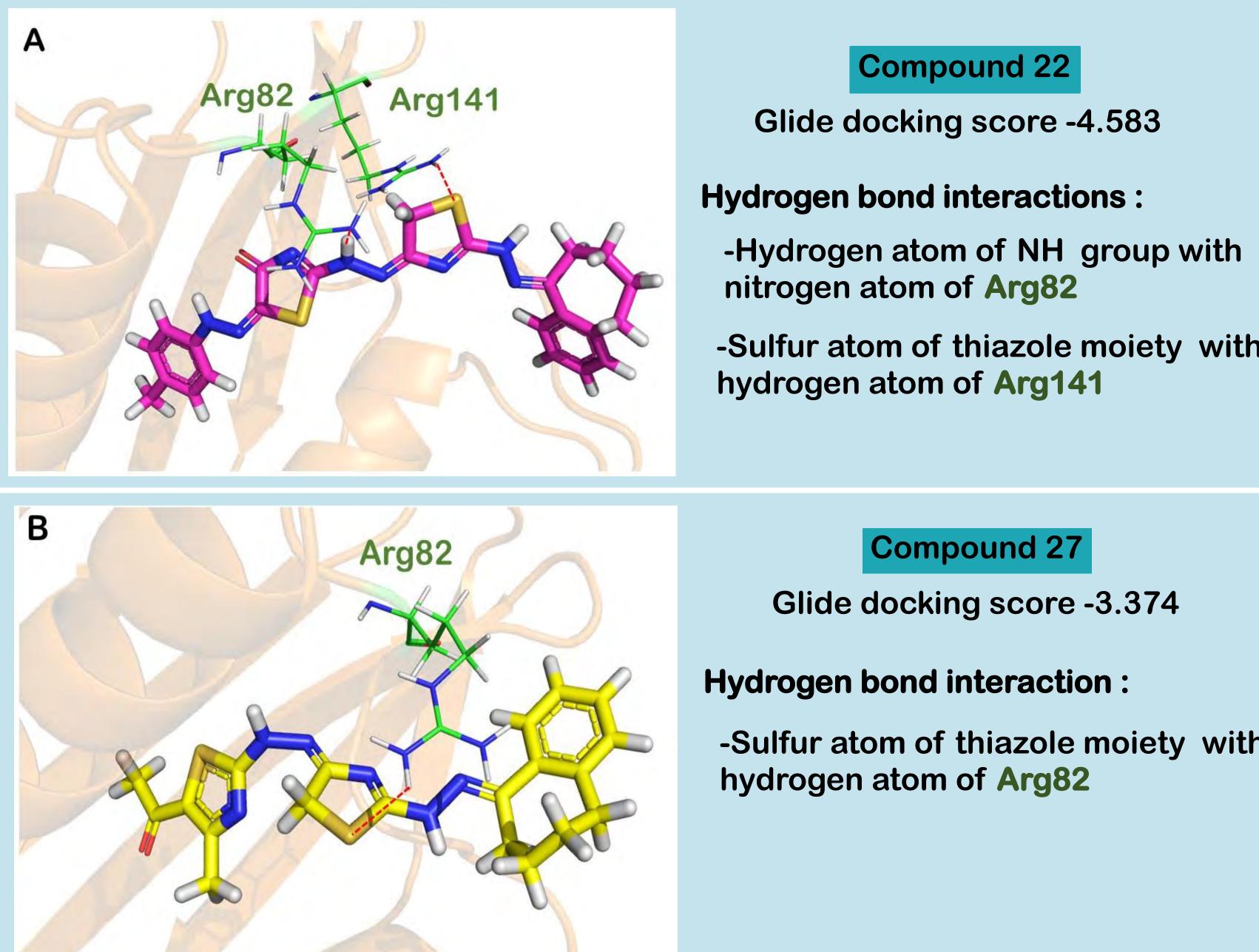
The Global TB Report 2021

- 9.9 million people around the world fell ill with TB
- **1.5 million people died from the disease**



DNA Gyrase is an attractive target for antibacterial which is an essential enzyme that has roles in the fundamental biological of replication, processes transcription and recombination. Mutations of DNA gyrase affected to fluoroquinolone drug resistance in GyrA domain are the main problem of treating tuberculosis. GyrB domain has been identified as a suitable target to overcome the

RESULTS


Validation of the molecular docking calculations

The molecular docking calculations predicted the binding mode, binding interactions and binding energy of 4BAE ligand in GyrB binding site with the root-mean square deviation (RMSD) of 0.86 angstrom in Figure 1.

Figure 1. Superimposition of the X-ray crystal structure (green) and docked conformation (pink) of the 4BAE adduct in the GyrB binding pocket.

Molecular docking analysis

MATERIALS AND METHOD

Structure and biological activities of two selected benzosuberone-thiazole derivatives from literature (Bioorg. Chem. 104 (2020) 104316.) summarized in Table 1. Molecular docking calculations using the Maestro 10.2 program was performed to predict the potent inhibitors in the GyrB binding pocket (PDB code 4BAE).

Table 1. Two chemical structures and their biological activity of benzosuberone-thiazole derivatives

Compounds	Structure	MIC (ug/ml)		IC ₅₀ (μΜ)
		Sensitive <i>M. tuberculosis</i>	Resistant <i>M. tuberculosis</i>	M.TB DNA gyrase ATPase assay
22		0.12	0.98	5.61
27	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.24	1.95	9.76

-Sulfur atom of thiazole moiety with

-Sulfur atom of thiazole moiety with

ACKNOWLEDGMENTS

□ Royal Golden Jubilee (RGJ) Ph.D. Program (PHD/0155/2560) to B. Pakamwong □ Health Systems Research Institute (HSRI.60.083) Ubon Ratchathani University (DR2564SC01200) **Excellence for Innovation in Chemistry (PERCH-CIC)** □ Faculty of Science, Ubon Ratchathani University □ Faculty of Science, Nakhon Phanom University □ Faculty of Science, Kasetsart University **School of Chemistry, University of Bristol** □ National Electronics and Computer Technology (NECTEC) □ EPSRC for funding via BristolBridge (grant number EP/M027546/1) □ CCP-BioSim (grant number EP/M022609/1)

Figure 2. Binding mode, binding interaction and binding energy of compound 22 (A) and 27 (B) obtained molecular docking calculations. Red line showed hydrogen bond interactions.

Compound 22 has two hydrogen bond interactions to correlate with low glide docking score.

CONCLUSIONS

Molecular docking calculations was used to evaluate binding mode, binding interaction and binding energy between benzosuberone-thiazole derivatives with GyrB pocket. The result revealed the hydrogen bond interactions of compound 22 and 27 with Arg82 residue in the GyrB pocket. Another hydrogen bond interaction was found to bind between compound 22 with Arg141 residue of the GyrB active site. Based on the results provide better understanding crucial interactions of benzosuberonethiazole derivatives with GyrB pocket for rational design new and more potent GyrB inhibitors as novel anti-tuberculosis agents.