

Investigation of the mechanism of anoikis resistance involving protein X in thyroid carcinoma cells

Phichamon Phetchahwong^{1,*}, Kittirat Saharat¹, Kriengsak Lirdprapamongkol¹, Jisnuson Svasti^{1,2}, and N. Monique Paricharttanakul¹

¹Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand

²Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok 10210, Thailand

*Email: phichamon@cri.or.th

Introduction

Thyroid cancer is the most prevalent endocrine malignancy and also the most common head and neck cancer. Mainly, thyroid cancer is classified into 4 types, namely follicular (FTC), papillary (PTC), medullary (MTC) and anaplastic (ATC) carcinoma [1]. Thyroid cancer accounts for 96% of all endocrine malignancies and is particularly more common in females (1-6%) than in males (1-2%) [2,3].

Anoikis is the induction of apoptosis in cells upon the loss of attachment to the extracellular matrix (ECM) and neighboring cells (Figure 1). Cancer cells must acquire anoikis resistance during metastasis [4,5, and 6].

Figure 1 Anoikis resistance is a critical step in cancer metastasis
Modified from: Adeshakin, F. O., et al. (2021).

The survival rate of thyroid cancer patients directly correlates with the development of metastatic stage. Impairing anoikis resistance is widely accepted as a promising strategy for metastatic cancer therapy. Previously, we have discovered an important role of protein X in anoikis resistance of thyroid cancer cells. However, the mechanism of how anoikis resistance is regulated by protein X is unknown.

Aims

To investigate the underlying molecular mechanism of anoikis resistance regulated by protein X in thyroid cancer cells.

Methods & Results

Figure 2 Cell culture & siRNA knockdown of protein X

Figure 3 Apoptosis/anoikis detection by flow cytometry using Muse annexin V & dead cell kit

Figure 4 Percentage of apoptosis/anoikis in ARO and FTC133 thyroid cancer cell lines after siRNA transfection.

Methods & Results

Figure 5 Detection of death receptors A and B protein expression by western blot analysis

Figure 6 Analysis of cell surface expression of death receptors A and B in cancer cells by flow cytometry

Figure 7 Effect of protein X silencing on the protein expression of receptor A and receptor B (A) ARO and (B) FTC133 cells. Actin was used as a loading control.

Figure 8 Effect of protein X silencing on cell surface expression levels of death receptor A (A,B) and death receptor B (C,D) in ARO and FTC133 cells. * $p<0.05$, ** $p<0.01$, *** $p<0.001$

Conclusions:

Protein X might suppress anoikis in anaplastic-type thyroid cancer cells by down-regulating cell surface expression of death receptor A and B, consequently promoting thyroid cancer metastasis (Figure 9). Further studies to identify protein X inhibitor(s) will help to treat thyroid cancer metastasis, therefore reducing the mortality of thyroid cancer patients.

Figure 9. A proposed mechanism of protein X-mediated anoikis resistance in anaplastic-type thyroid cancer cells.

Acknowledgements:

This research was supported by the Thailand Science Research and Innovation and the Chulabhorn Research Institute (grant no. 313/2230).

References:

- [1] Nguyen, Q. T., et al. (2015). "Diagnosis and treatment of patients with thyroid cancer." *Am Health Drug Benefits*, 8(1), 30-40.
- [2] Pellegriti, G., et al. (2013). "Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors." *J Cancer Epidemiol* 2013: 965212.
- [3] Siegel, R. L., et al. (2017). "Cancer Statistics, 2017." *CA Cancer J Clin*, 67(1), 7-30.
- [4] Adeshakin, F. O., et al. (2021). "Mechanisms for Modulating Anoikis Resistance in Cancer and the Relevance of Metabolic Reprogramming." *Front Oncol*, 11(528).
- [5] Frisch, S. M., & Francis, H. (1994). "Disruption of epithelial cell-matrix interactions induces apoptosis." *J Cell Biol*, 124(4), 619-626.
- [6] Simpson, C. D., et al. (2008). "Anoikis resistance and tumor metastasis." *Cancer Lett*, 272(2): 177-185.
- [7] Kumar, R., et al. (2005). "An introduction to death receptors in apoptosis." *Int J Surg* 3(4): 268-277.
- [8] Oh, Y. T., & Sun, S. Y. (2021). "Regulation of Cancer Metastasis by TRAIL/Death Receptor Signaling." *Biomolecules*, 11(4), 499.