Identification of Novel JAK2 Inhibitors as Erythropoiesis Stimulant Agents for Thalassemia Therapy

Sirintip Sangsawang¹, Siripen Modmung¹, Bandit Khamsri¹, Somjintana Taweepanich¹, Chan Inntam¹, Jidapa Sangswan², Pharit Kamsri³, Auradee Punkvang³, Khomson Suttisintong⁴, Kanjana Pangjit⁵, Noriyuki Kurita⁶ and Pornpan Pungpo¹*

Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand ² Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand ³ Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand ⁴ National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani, Thailand ⁵ College of Medicine and Public Health, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani, 34190, Thailand ⁶ Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan

*Email: pornpan_ubu@yahoo.com

Introduction

Results

□ **Biological activity prediction and molecular docking studies**

Janus kinase 2 (JAK2) is an enzyme responsible for regulating erythropoiesis

	Specs ID	Caco2	Intestinal absorption (human)	Pgp inhibitor	BBB CNS	CYP2D6 substrate	CYP3A4 substrate	CYP1A2 inhibitor	CYP2C19 inhibitor	CYP2C9 inhibitor	OCYP2D6 inhibitor	CYP3A4 inhibitor	Total Clearance	Renal OCT2 substrate	AMES toxicity	hERG inhibitor	Oral Rat Acute Toxicity (LD50)	Hepato toxicity
AN	-979/41713534	1.249	91.680	Yes	-0.332 -2.273	No	Yes	No	Yes	Yes	No	Yes	-0.082	No	No	Yes	2.256	Yes
AN	-648/15101115	1.137	94.696	Yes	-0.551 -2.352	No	Yes	Yes	Yes	No	No	Yes	-0.095	No	No	Yes	3.239	Yes
Caco2 > 0.90 high Caco2 permeability Intestinal absorption (human) < 30% is considered to be poorly adsorbed						BBB > can rea BBB < poorly	BBB > 0.3 can readily cross the blood-brain BBB < -1 poorly distributed to the brain				CNS > -2 can penetrate the Central Nervous System (CNS) CNS < -3 unable to penetrate the CNS							

- The binding mode and binding interactions in the ATP binding site of JAK2, the hydrogen bond interactions with Leu932 backbone in the ATP binding site of JAK2 are key interaction for binding of new finding compounds
- The Caco2 permeability of these two compounds was high.
- The BBB and CNS permeability values suggested that the selected compounds were poorly distributed to the brain and unable to penetrate the CNS
- The finding compounds were proposed as novel and potential JAK2 inhibitors as ESA for thalassemia therapy

Figure 3 The binding mode of (a) AN-979/41713534 and (b) AN-648/15101115 in JAK2 binding pocket

Acknowledgments

National Science, Research and Innovation Fund (NSRF) **Given Science**, Ubon Ratchathani University Ubon Ratchathani University Nakhon Phanom University □ National Electronics and Computer Technology Center (NECTEC)