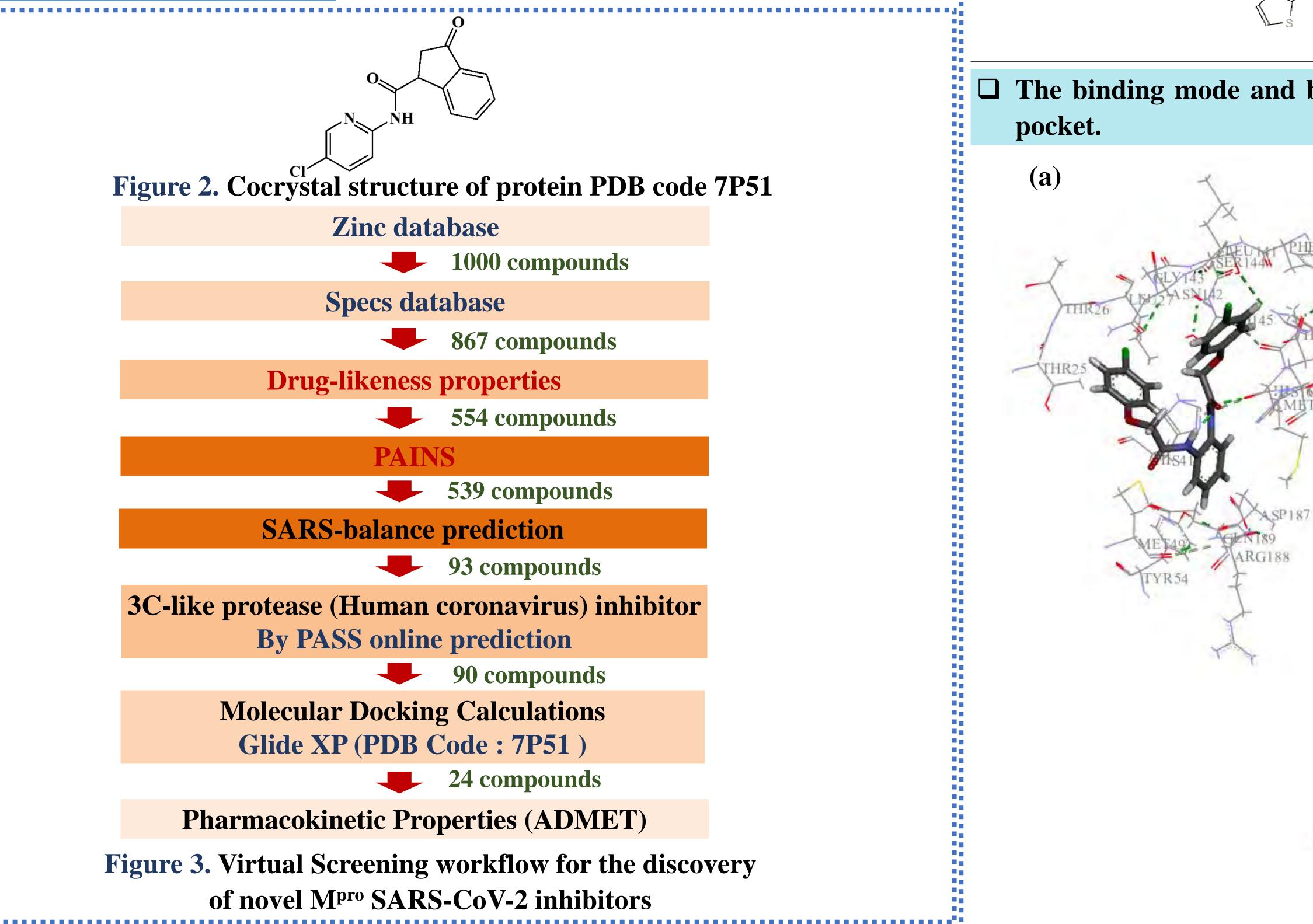
Discovery of novel main protease inhibitors of SARS-CoV-2 using virtual screening and pharmacokinetic predictions

Siripen Modmung¹, Sirintip Sangsawang¹, Chayanin Hanwarinroj¹, Bandit Khamsri¹, Somjintana Taweepanich¹, Chan Inntam¹, Jidapa Sangswan², Sasithorn Lorroengsil², Pharit Kamsri³, Auradee Punkvang³, Jiraporn Leanpolchareanchai⁴, Narisara Chantratita⁵, Warinthorn Chavasiri⁶, Khomson Suttisintong⁷, Prasat Kittakoop^{8,9,10}, Noriyuki Kurita ¹¹, Pornpan Pungpo^{1*}

> ¹Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand ² Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand ³ Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand ⁴ Faculty of Pharmacy, Mahidol University, 10400 Bangkok, Thailand ⁵ Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 10400 Bangkok, Thailand ⁶ Department of Chemistry, Faculty of Science, Chulalongkorn University, 10330 Bangkok, Thailand ⁷National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani, Thailand ⁸ Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand ⁹ Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand ¹⁰ Center of Excellence on Environmental Health and Toxicology (EHT) ¹¹ Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan *Email: pornpan_ubu@yahoo.com

Introduction


19

Results

The major health concern is COVID-19 disease, which is caused by the SARS-CoV- B D Biological activity prediction and molecular docking studies 2 virus. Curbing the spread of the virus has been challenging as it has various means of transmission including direct contact, via droplets, airborne, fomite, fecal-oral, bloodborne, sexual intercourse, ocular, mother-to-child, and animal-to-human. Therefore, the potential drugs have been urgently discovery for treatment of COVID-

The main protease enzyme has been validated as a drug development target to stop SARS-CoV-2. Herein, we attempted to identify new promising main protease (M^{pro}) inhibitors from Specs database using virtual screening and binding mode

Materials & Methods

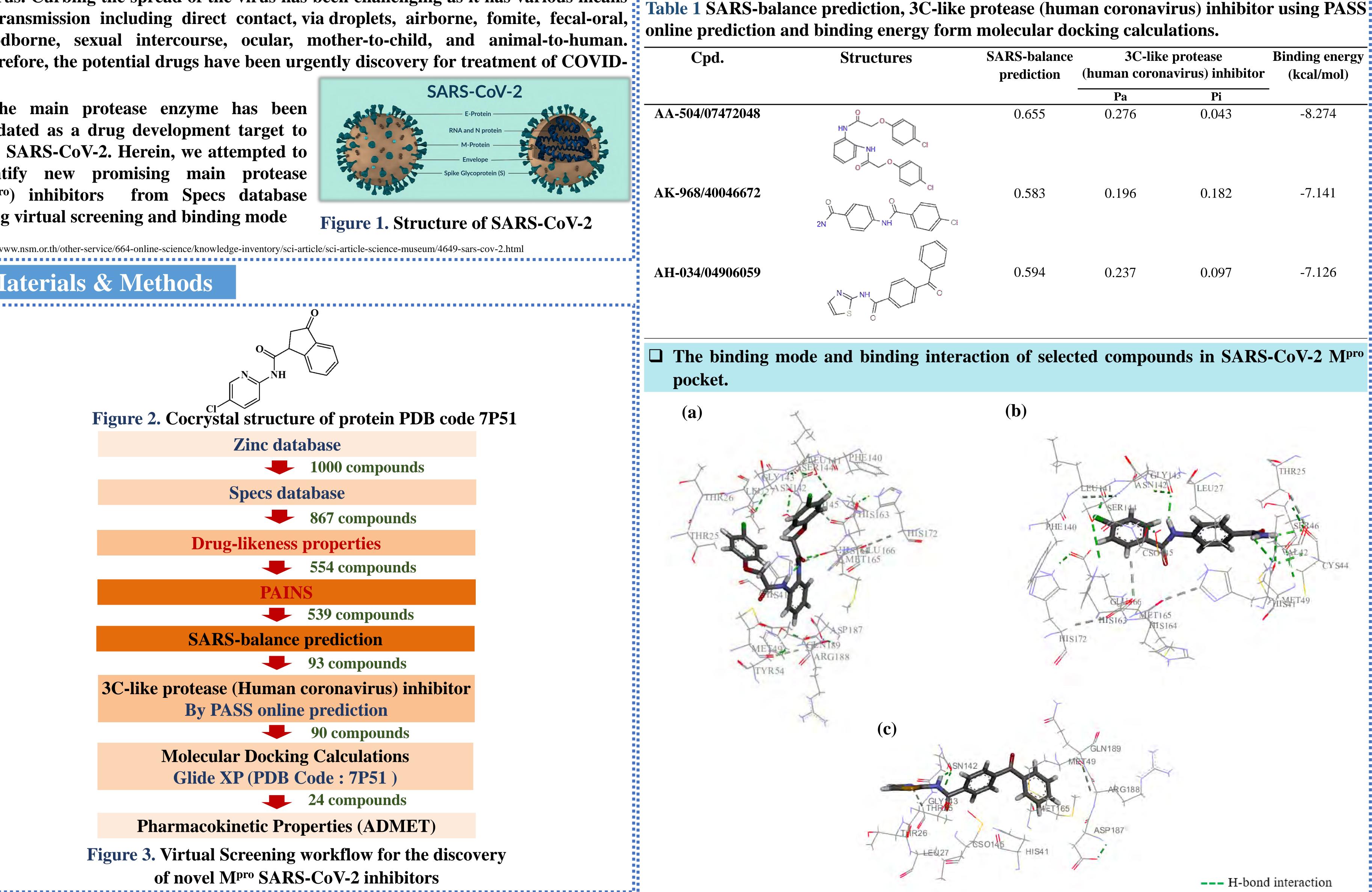


Figure 3 The binding mode of (a) AA-504/07472048, (b) AK-968/40046672

Conclusions

	and (c) AH-034/04906059 in SARS-CoV-2 M ^{pro} pocket.																
Three compounds, AA-504/07472048, AK-968/40046672 and AH-034/04906059 with good binding affinity and pharmacokinetic properties were obtained. Hydrogen bond	\square The pharmacokinetic properties (ADMET) prediction																
good binding and pharmaconneae properties were obtained. Hydrogen bond																	
interactions with Asn142 residue, pi-sigma interactions with Met165 residue and	idue and Table 2 ADMET prediction of selected compounds																
hydrophobic interactions with Met165, Gly143 and Leu27 residues in the SARS-CoV-2	Specs ID	Caco2 Intestina absorptio	l BBB CNS	CYP2D6 CYP2D6 Cyperate structure contracted structure contracted structure s	CYP3A4 substrate	CYP1A2 inhibitor	CYP2C1 C	CYP2C9	CYP2D C	CYP3A	Total Clearance	Renal	AMES toxicity	hERG	Oral Rat	Hepato	
M ^{pro} binding site were found as crucial interactions. Based on pharmacokinetic		(human)		substrate s	substrate	minonor	inhibitor		inhibitor ir			substrat	·	minutor	Toxicity	toxicity	
properties predictions, these compounds were suitable to propose for biological assay												e			(LD50)		
evaluation and develop as anti-COVID-19 agents.	AA-504/07472048	1.323 86.602	-0.703 -2.183	No	Yes	No	Yes	Yes	No	Yes	-0.298	No	No	Yes	2.057	No	
	AK-968/40046672	1.108 91.356	-0.065 -2.203	No	Yes	Yes	Yes	No	No	No	-0.42	No	Yes	No	1.985	No	
Acknowledgments	AH-034/04906059	1.380 94.503	-0.17 -2.05	No	Yes	Yes	Yes	Yes	No	No	0.04	No	Yes	Yes	2.654	No	
Ubon Ratchatani University	Caco2 > 0.90			BBB	> 0.3				CN	S > -2							
- I dealty of belefied, e boil Ratefiatifiant entreisity	high Caco2 permeability			•						an penetrate the Central Nervous System (CNS)							
E FACULTY OF NCIENCE INAKNON PHANOM LINIVERSITY	Intestinal absorption (human) < 30%										CNS < -3						
Generation Faculty of Science, Kasetsart University	is considered to be poorly adsorbed poorly distributed to the brain unable to penetrate the CNS								·····i								
National Nanotechnology Center (NANOTEC)	16th Inte	rnational (Online Mir	ni-Sym	posiu	m of t	the Pro	tein S	Society	of T	hailan	d, No	vemb	er 17-	-18, 20	21	