

# Discovery of novel and potential InhA inhibitors based on virtual screening approaches



N. Phusi<sup>1</sup>, T. Pornprom<sup>1</sup>, C. Hanwarinroj<sup>1</sup>, C. Inntam<sup>1</sup>, S. Taveepanich<sup>1</sup>, J. sangswan<sup>2</sup>, S Lorroengsill<sup>2</sup>, P. Kamsri<sup>3</sup>, A. Punkvang<sup>3</sup>, P. Saparpakorn<sup>4</sup>, S. Hannongbua<sup>4</sup>, K. Suttisintong<sup>5</sup>, P. Kittakoop<sup>6,7,8</sup>, N. Kurita<sup>9</sup>, J. Spencer<sup>10</sup>, A. J. Mulholland<sup>11</sup>, and P. Pungpo<sup>1,\*</sup>

<sup>1</sup>Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

<sup>2</sup>Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

<sup>3</sup>Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand

<sup>4</sup>Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

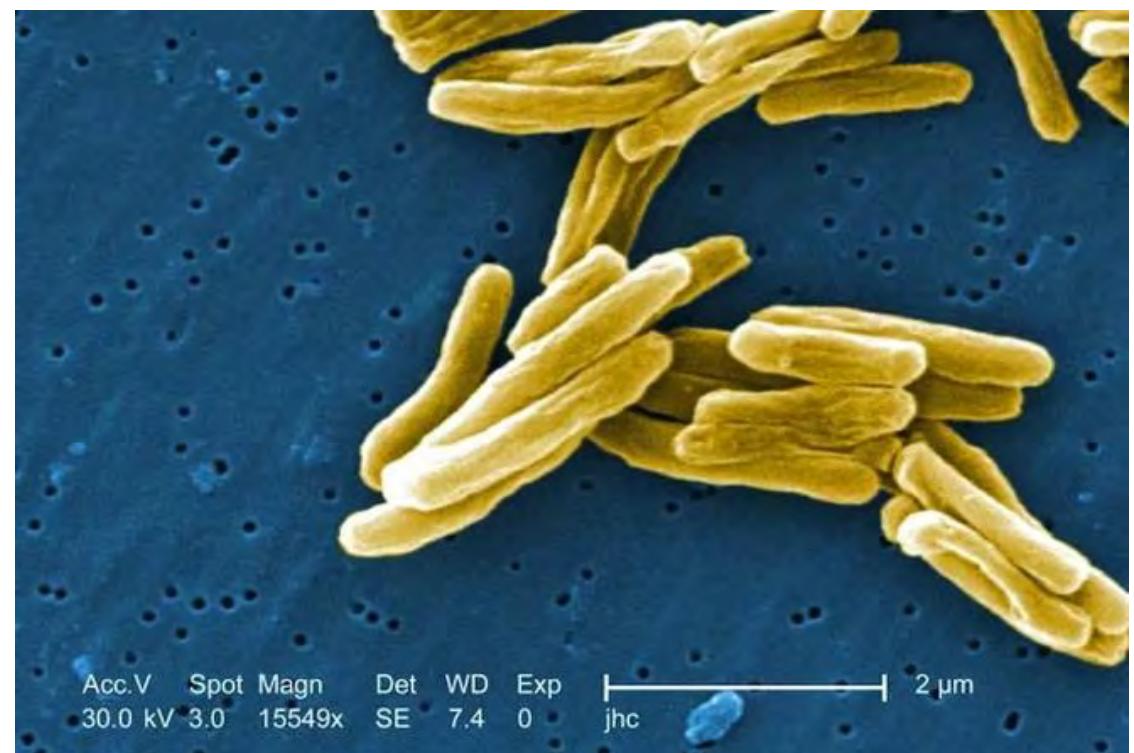
<sup>5</sup>National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani 12120, Thailand

<sup>6</sup>Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand

<sup>7</sup>Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand

<sup>8</sup>Center of Excellence on Environmental Health and Toxicology (EHT)

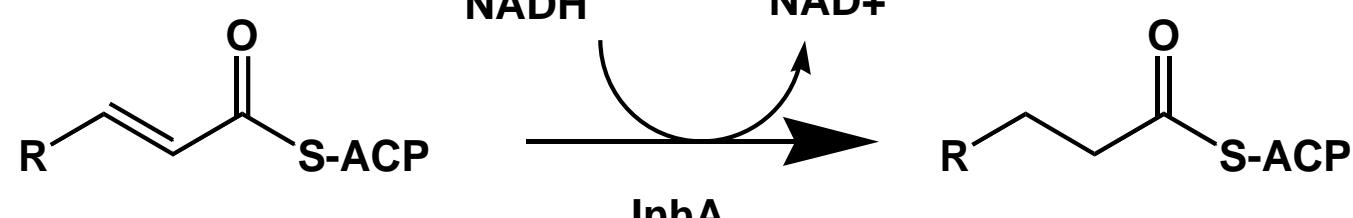
<sup>9</sup>Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan


<sup>10</sup>School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, United Kingdom

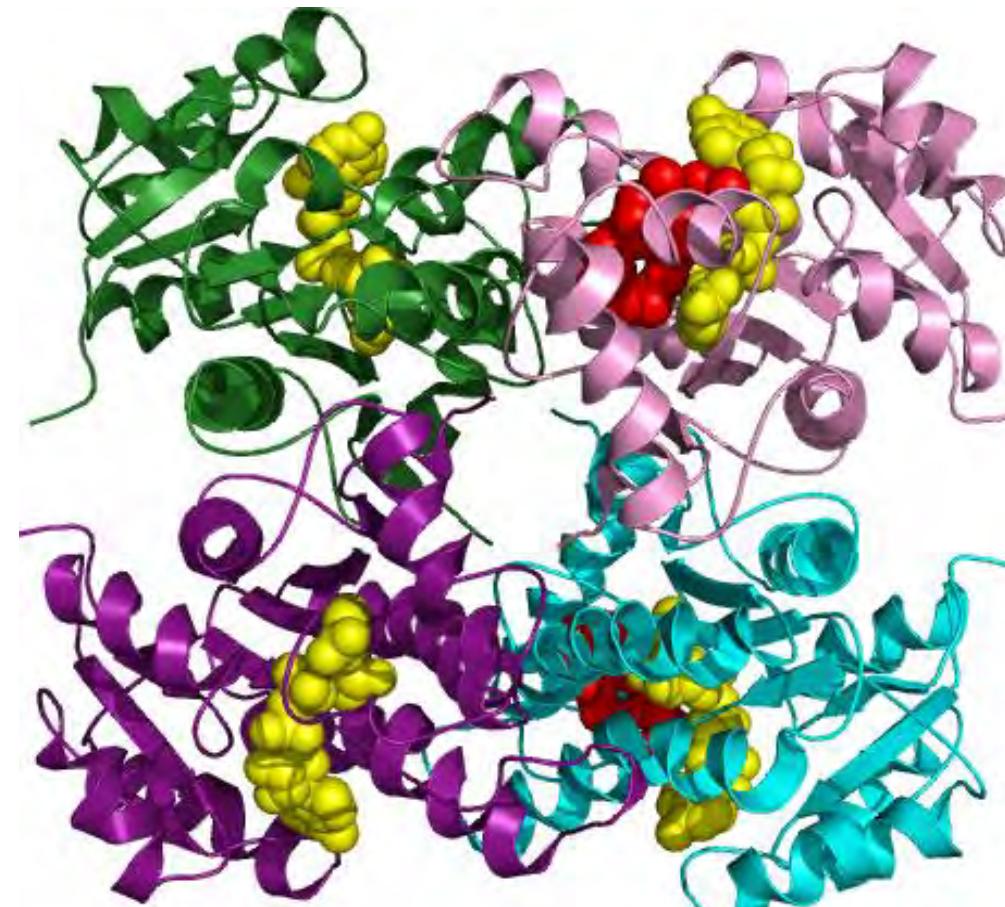
<sup>11</sup>Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom

\*Email: pornpan\_uba@yahoo.com




## INTRODUCTION




- Tuberculosis or TB is caused by *Mycobacterium tuberculosis*.
- In 2021, WHO report, about 9.9 million people around the world fell ill with TB and 1.5 million people died from the disease.
- In addition, mutation and drug resistant are the serious problem for treatment.
- Therefore, the effective drugs are urgently required.

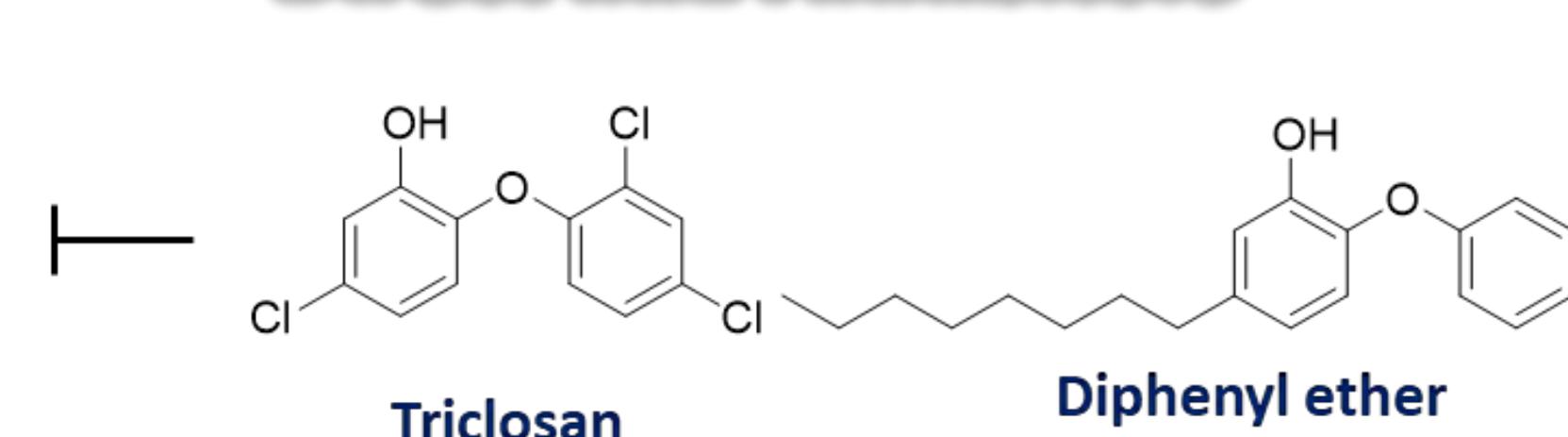
### Enoyl-ACP Reductase or InhA

Excellent target for the development of new anti-TB agents

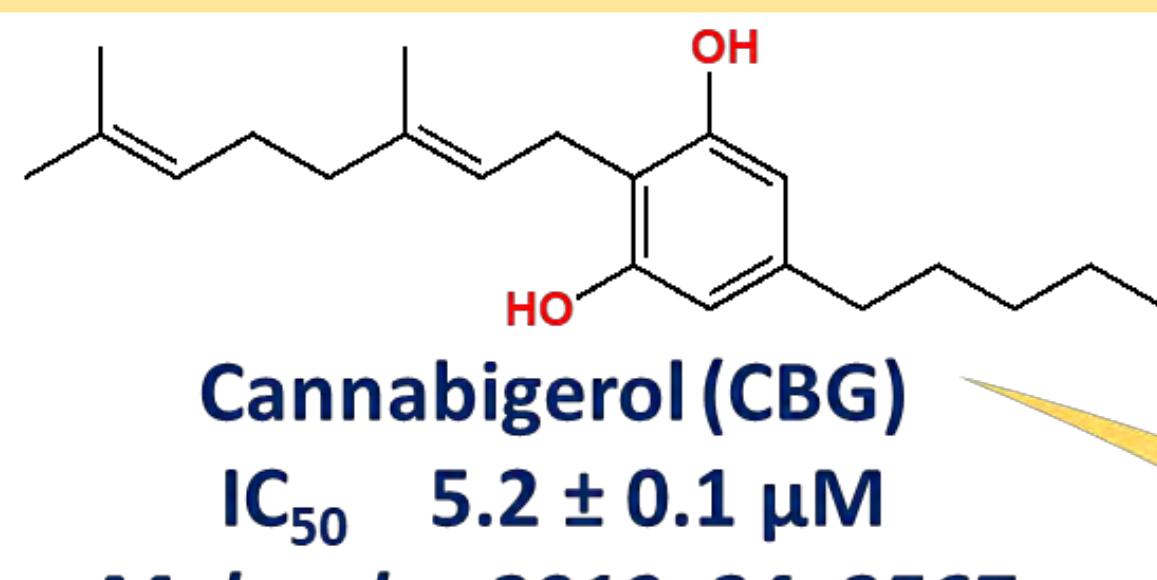


The biochemical mechanism of the InhA enzyme




- The InhA is a key enzyme catalyzing the reduction of long-chain trans-2-enoyl-ACP in the type II fatty acid biosynthesis pathway of *M. tuberculosis*.
- Inhibition of InhA terminates the biosynthesis of the mycolic acids, central constituents of the mycobacterial cell wall
- The InhA has been identified as the target of isoniazid

### Indirect InhA inhibitors




□ Mutations of Kat G

### Direct InhA inhibitors



## MATERIAL & METHODS



*Molecules* 2019, 24, 2567

Drug-likeness properties  
Swiss ADME software

Biological testing search  
PubChem software

1 50% similarity search  
Specs database

3 Molecular Docking Calculations  
AutoDock4.2 program,  
PDB Code : 3FNH

Hit compound

## ACKNOWLEDGMENTS

- Thailand Graduate Institute of Science and Technology (TGIST) (SCA-CO-2563-12135-TH) to N. Phusi
- The Thailand Research Fund (RSA5980057)
- The RGJ Advanced Program (RAP60K0009)
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Ubon Ratchathani University
- The Faculty of Science, Ubon Ratchathani University
- Faculty of Science, Kasetsart University
- The University of Bristol
- The National Electronics and Computer Technology Center (NECTEC)
- The National Nanotechnology Center (NANOTEC)

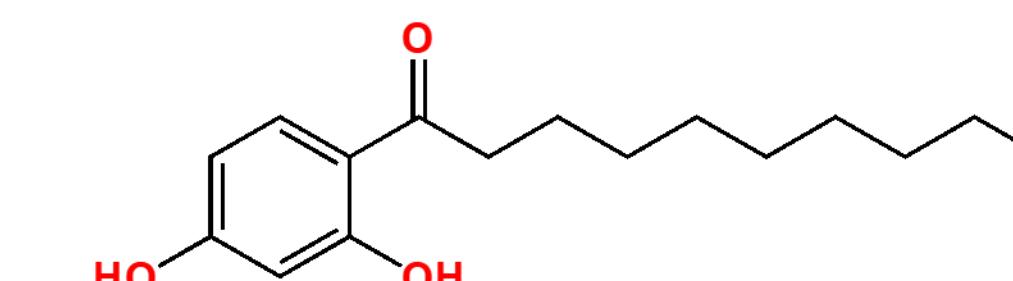
## RESULTS

50% similarity search from Specs database  
(6 compounds)

Lipinski and PAINS  
(5 compounds)

Docking score -6.94 to -9.02 kcal/mol  
(5 compounds)

Biological testing search by PubChem  
(3 compounds)


Hit compound  
(3 compounds)

Ligand based  
virtual screening

Structure based  
virtual screening

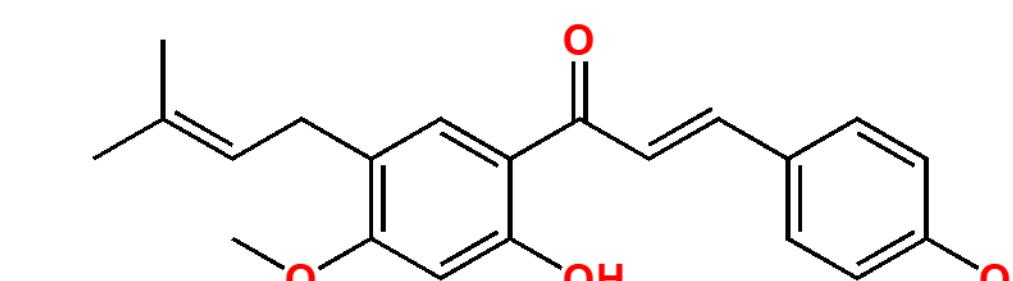

*In silico* based  
anti-tuberculosis activity

Figure 1 The virtual screening process of InhA inhibition from specs database.



AA-504/21163099 (Cpd.1)

AK-087/42718139 (Cpd.2)



AA-693/21159010 (Cpd.3)

Figure 2 Structure of hit compounds from virtual screening.

Table 1 Lipinski's five rules, PAINS, and docking score of hit compounds.

| Cpd. | Lipinski |                |                  |               |       | PAINS | Docking score (kcal/mol) |
|------|----------|----------------|------------------|---------------|-------|-------|--------------------------|
|      | MW       | Rotatable bond | H-bond acceptors | H-bond donors | MlogP |       |                          |
| CBG  | 312.53   | 9              | 2                | 2             | 6.60  | 0     | -8.00                    |
| 1    | 382.45   | 8              | 5                | 1             | 2.79  | 0     | -8.56                    |
| 2    | 264.36   | 9              | 3                | 2             | 2.74  | 0     | -6.94                    |
| 3    | 338.40   | 6              | 4                | 2             | 2.92  | 0     | -9.01                    |

Molecular weight (MW) is less than 500 g/mol  
Rotatable bonds is less than 10 bonds  
Number of H-bond acceptors is less than 10

Number of H-bond donors is less than 5  
MlogP is less than 4.15

Number of H-bond acceptors is less than 10

Molecular weight (MW) is less than 500 g/mol

Rotatable bonds is less than 10 bonds

Number of H-bond acceptors is less than 10

Number of H-bond donors is less than 5

MlogP is less than 4.15

Number of H-bond acceptors is less than 10

Molecular weight (MW) is less than 500 g/mol

Rotatable bonds is less than 10 bonds

Number of H-bond acceptors is less than 10

Number of H-bond donors is less than 5

MlogP is less than 4.15

Number of H-bond acceptors is less than 10

Molecular weight (MW) is less than 500 g/mol

Rotatable bonds is less than 10 bonds

Number of H-bond acceptors is less than 10

Number of H-bond donors is less than 5

MlogP is less than 4.15

Number of H-bond acceptors is less than 10

Molecular weight (MW) is less than 500 g/mol

Rotatable bonds is less than 10 bonds

Number of H-bond acceptors is less than 10

Number of H-bond donors is less than 5

MlogP is less than 4.15

Number of H-bond acceptors is less than 10

Molecular weight (MW) is less than 500 g/mol

Rotatable bonds is less than 10 bonds

Number of H-bond acceptors is less than 10

Number of H-bond donors is less than 5

MlogP is less than 4.15

Number of H-bond acceptors is less than 10

Molecular weight (MW) is less than 500 g/mol

Rotatable bonds is less than 10 bonds

Number of H-bond acceptors is less than 10

Number of H-bond donors is less than 5

MlogP is less than 4.15

Number of H-bond acceptors is less than 10

Molecular weight (MW) is less than 500 g/mol

Rotatable bonds is less than 10 bonds

Number of H-bond acceptors is less than 10

Number of H-bond donors is less than 5

MlogP is less than 4.15

Number of H-bond acceptors is less than 10

Molecular weight (MW) is less than 500 g/mol

Rotatable bonds is less than 10 bonds

Number of H-bond acceptors is less than 10

Number of H-bond donors is less than 5

MlogP is less than 4.15

Number of H-bond acceptors is less than 10

Molecular weight (MW) is less than 500 g/mol

Rotatable bonds is less than 10 bonds

Number of H-bond acceptors is less than 10

Number of H-bond donors is less than 5

MlogP is less than 4.15

Number of H-bond acceptors is less than 10

Molecular weight (MW) is less than 500 g/mol

Rotatable bonds is less than 10 bonds

Number of H-bond acceptors is less than 10

Number of H-bond donors is less than 5

MlogP is less than 4.15

Number of H-bond acceptors is less than 10

Molecular weight (MW) is less than 500 g/mol

Rotatable bonds is less than 10 bonds

Number of H-bond acceptors is less than 10

Number of H-bond donors is less than 5

MlogP is less than 4.15