Virtual screening of novel M. tuberculosis PknA/PknB dual inhibitors as anti-tuberculosis agents

Pharit Kamsri^{1,*}, Auradee Punkvang¹, Paptawan Thongdee², Khomson Suttisintong³, Prasat Kittakoop^{4,5,6}, James Spencer⁷, Adrian J. Mulholland,⁸ Galina V. Mukamolova⁹, Pornpan Pungpo²

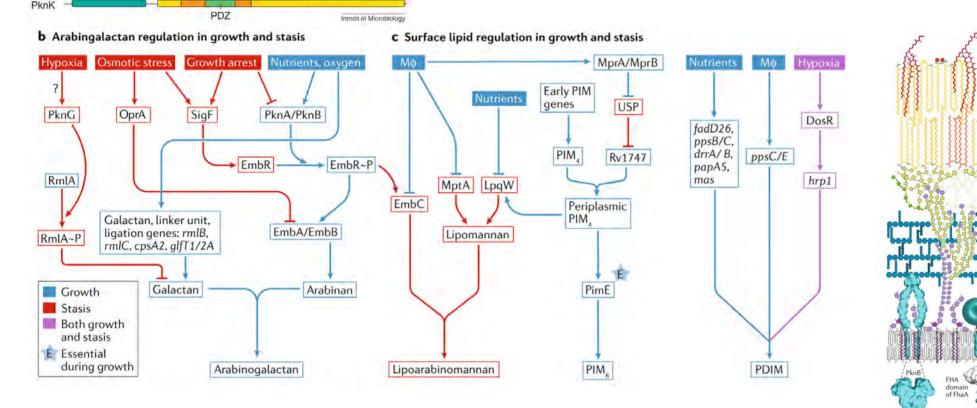
¹Division of Chemistry, Faculty of Science, Nakhon Phanom University, 48000 Nakhon Phanom, Thailand, ²Department of Chemistry, Faculty of Science Ubon Ratchathani University, 34190 Ubon Ratchathani, Thailand, ³National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, 12120 Pathumthani, Thailand, ⁴Chulabhorn Research Institute, 10210 Bangkok, Thailand, ⁵Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, 10210 Bangkok, Thailand, ⁶Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, 10300 Bangkok, Thailand, ⁷School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD Bristol, United Kingdom, 8Centre for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom, 9Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, United Kingdom

Introduction

Results

Biological prediction, docking energy and pharmacokinetic prediction of hit compounds

CHEMBL_ID	PknB		ТВ		MTB	H37Rv	H37Ra	R-MTB	R-H37R	Rv MycoCSM	Caseum FU(%)	MRTD log (mg/kg/day)	Docking (kcal/mo	
													PknA	PknB
CHEMBL12573	310 0.286	0.020	0.204	0.164		0.387			0.350	-4.559	1.296	0.067	-6.11	-8.61
CHEMBL1356	3360.199	0.034	0.233	0.130		0.352		0.030	0.043	-4.641	0.198	0.461	-6.17	-8.48
CHEMBL14037	777 0.109	0.078	0.217	0.148	0.001	0.050				-4.957	18.565	0.117	-6.93	-8.43
CHEMBL15384	43 0.115	0.072	0.357	0.046	0.154	0.500	0.039	0.121	0.237	-4.992	0.274	0.475	-6.35	-8.09


Report 2021

10 million people fell ill with TB. 1.5 million people deaths in 2020. Most TB cases were in the WHO regions of South-East Asia (43%)

> □ Ser/Thr protein kinases (STPKs) have been interested in anti-tuberculosis drug development.

□ *M. tuberculosis* STPK family contains 11 putative eukaryotic-like protein kinases

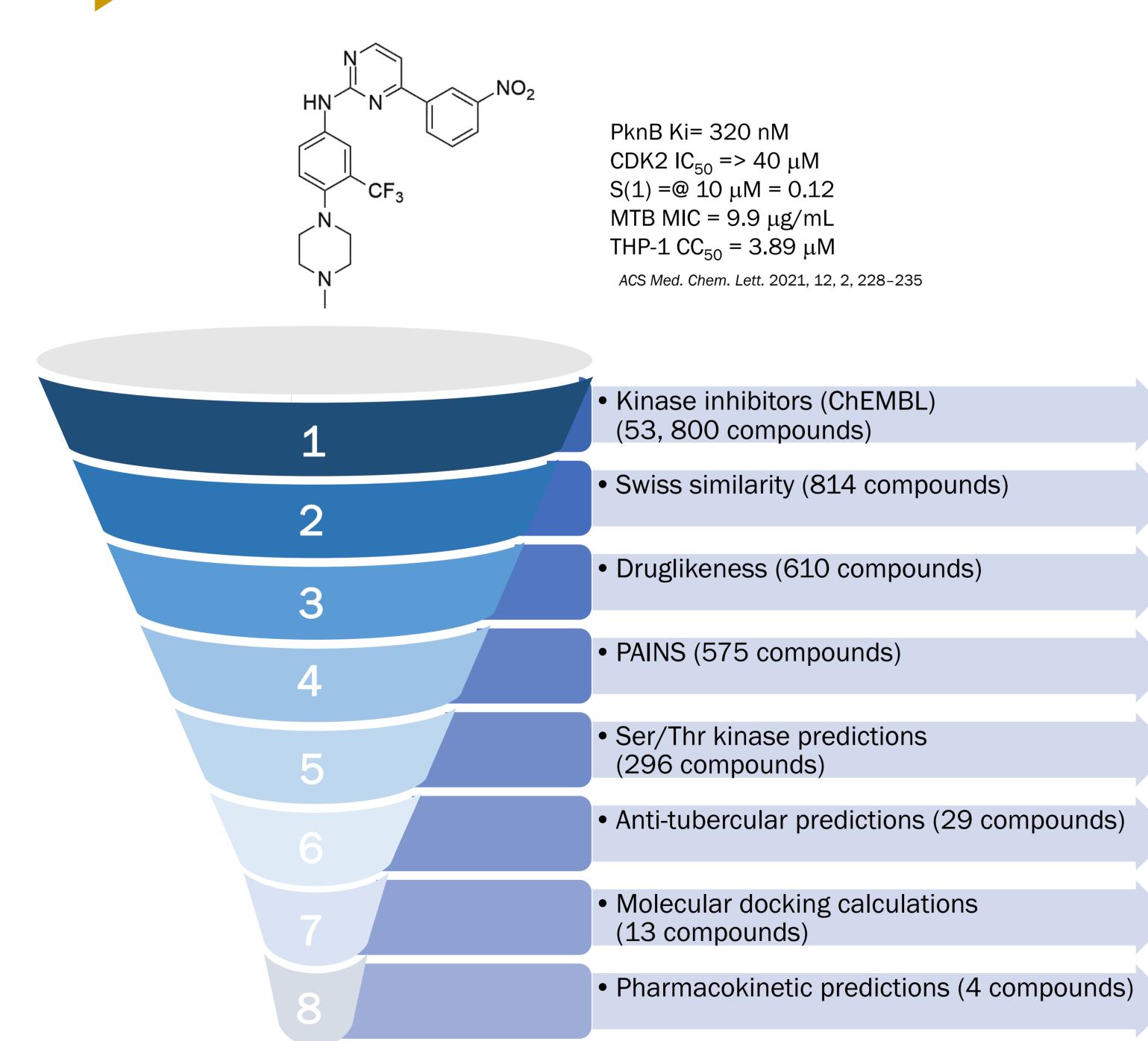
□ PknA and PknB controls the switch between peptidoglycan elongation and septum formation in bacteria.

Trends Microbiol. 2000, 8(5), 238-244. Nat Rev Microbiol. 2020, 18(1), 47-59 Tuberculosis report 2021, WHO

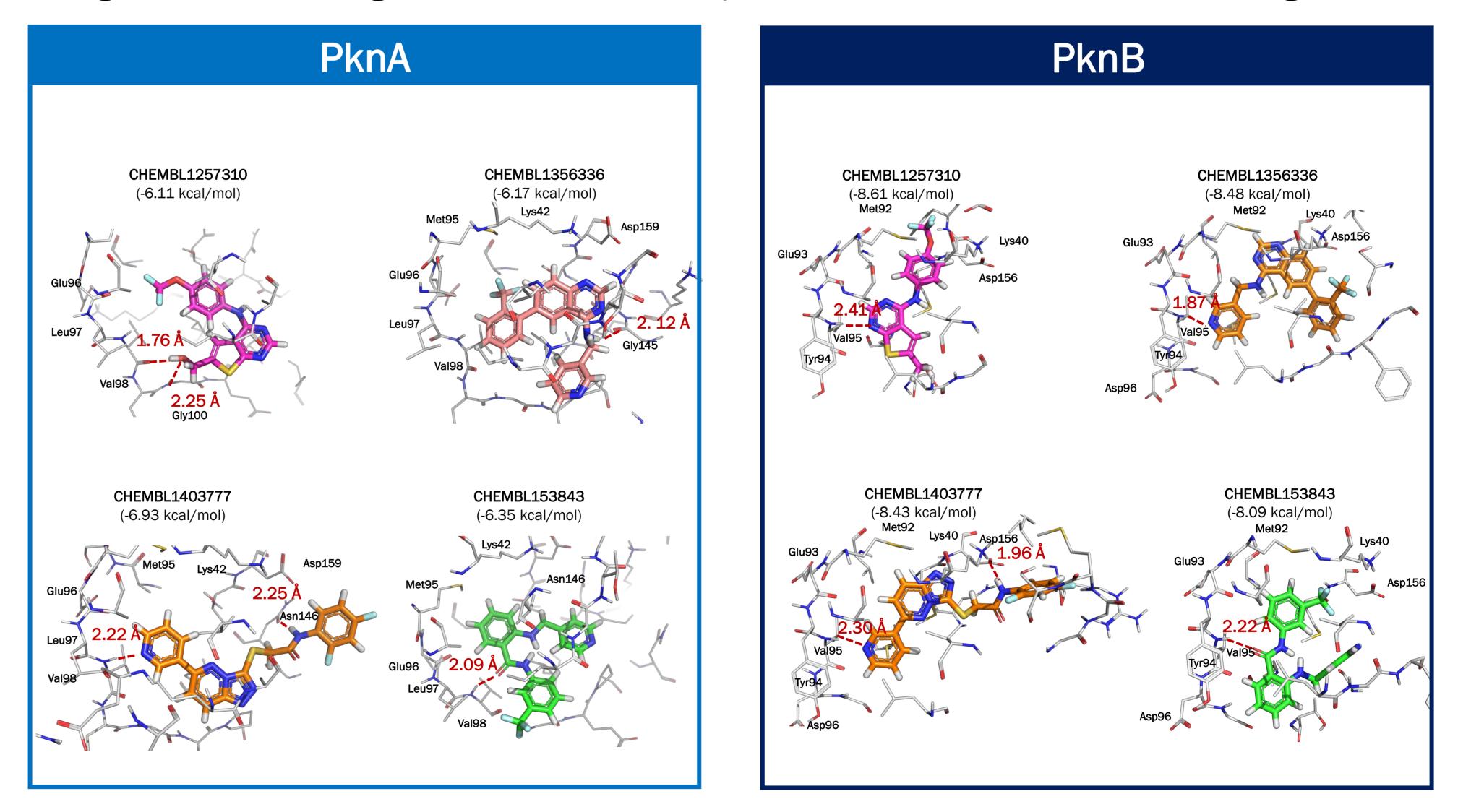
Absorption

•							
CHEMBL ID	Water solubility	Caco2 permeability (log Papp in 10 ⁻⁶ cm/s)	Intestinal absorption (human) (% Absorbed)	Skin Permeability	P-glycoprotein substrate	P-glycoprotein I inhibitor	P-glycoprotein I inhibitor
CHEMBL1257310	-4.38	0.92	88.96	-2.91	No	No	Yes
CHEMBL1356336	6-4.54	1.46	93.65	-2.74	Yes	Yes	Yes
CHEMBL1403777	-2.96	1.20	96.83	-2.74	Yes	Yes	Yes
CHEMBL153843	-4.16	1.00	91.07	-2.77	Yes	Yes	Yes

Distribution


CHEMBL ID	VDss (human) (log L/kg)	Fraction unbound (human) (Fu)	BBB permeability (log BB)	CNS permeability (log PS)
CHEMBL1257310	-0.17	0.15	-0.15	-2.24
CHEMBL1356336	0.10	0.10	0.51	-1.81
CHEMBL1403777	0.46	0.14	-1.21	-3.64
CHEMBL153843	-0.08	0.07	0.07	-1.83

Metabolism & Excretion


	Metabo	lism							Exc	retion		
CHEMBL ID	CYP2D6 substra	6 CYP3A4 te substrate	CYP1A2 inhibitio			YP2C9 hibitior	CYP2D inhibiti			al Clearar ; ml/min/	$\frac{1}{k\sigma}$	Renal OCT2 Substrate
CHEMBL1257310	No	Yes	Yes	Yes	Y	es	No	No	0.1	5	Ν	10
CHEMBL1356336	No	Yes	Yes	Yes	Ye	es	Yes	Yes	0.2	5	Ν	0
CHEMBL1403777	No	Yes	Yes	No	N	0	No	Yes	0.0	9	Ν	10
CHEMBL153843	Yes	Yes	Yes	Yes	Y	es	No	Yes	0.0	7	Ν	0
		MRTD (human) (log mg/kg/day)	Inflibitor	nERG II inhibit or	Oral Rat Acute Toxicity (LD ₅₀) (mol/kg	Chr Tox (LO mg, bw/	′day)		on	log u	ty	toxicity (log mM)
CHEMBL1257310	Yes	0.07	No	Yes	2.82	1.5	0	Yes	No	0.77		1.10
CHEMBL1356336	Yes	0.46	No	Yes	2.69	0.5	6	Yes	No	0.31		0.72
CHEMBL1403777	No	0.12	No	Yes	2.55	0.8		Yes	No	0.29		-0.87
CHEMBL153843	No	0.48	No	Yes	2.69	0.9	0	Yes	No	0.68		0.47

Binding mode and binding interactions of hit compounds derived from molecular docking calculations

Virtual screening workflow to identify of PknA/PknB dual inhibitors

Conclusions

- □ Four kinase inhibitors (CHEMBL1257310, CHEMBL1356336, CHEMBL1403777 and CHEMBL153843) were discovered as PknA/PknB dual inhibitors as anti-tuberculosis agents based on virtual screening and pharmacokinetic prediction.
- The predicted biological evaluation using several methods were confirmed that these finding compounds were promising structure for future validation as anti-tuberculosis agents.
- Strong binding affinity in the ATP binding site of PknA and PknB was obtained from molecular docking calculations. These hits shared hydrogen bond interaction with Val98 and Val95 backbone for PknA and PknB, respectively as the key interaction for binding.

Acknowledgements

> Royal Society-Newton Mobility Grant and Office of Permanent Secretary, Ministry of Higher Education Science Research and Innovation (NMG\R1\201061) Thailand research fund (RSA5980057) BristolBridge (EP/M027546/1) and CCP-BioSim (EP/M022609/1) Center of Excellence for Innovation in Chemistry (PERCH-CIC) Faculty of Science, Nakhon Phanom University Faculty of Science, Ubon Ratchathani University Faculty of Science, Kasetsart University University of Bristol University of Leicester NECTEC and NANOTEC

16th International Online Mini-Symposium of the Protein Society of Thailand, November 17-18, 2021